Educational Administration: Theory and Practice

2023, 29(4), 3119-3130 ISSN: 2148-2403 https://kuey.net/

Research Article

Absolute Mean Cordial Labelling

J.C. Kanani1*, H. P. Chudasama2

^{1*}Government Polytechnic Rajkot-360003. kananijagrutic@gmail.com

Citation: J.C. Kanani, et.al (2023) Absolute Mean Cordial Labelling, Educational Administration: Theory and Practice, 29(4), 3119-3130

DOI: 10.53555/kuey.v29i4.7798

ARTICLE INFO	ABSTRACT
	The focus of this article is to demonstrate a new graph labeling which is called absolute mean cordial labeling. We proved every triangular snake T_r , $\forall r \geq 3$, cycle C_s , $s \geq 4$, $s = 5$, friendship graph F_t , helm graph H_m , alternate triangular snake AT_r , $\forall r \geq 3$, double triangular snake DT_r , $\forall r \geq 3$, double alternate triangular snake $DA(T_r)$, $\forall r \geq 3$ are absolute mean cordial graphs.
	AMS classification no: 05C78
	Keywords: Graphs, triangular snake, absolute mean cordial labeling.

1. Introduction

The idea of cordial labeling was presented by Cahit [2] in 1987 and for numbering in graph was characterized by S.W.Golomb [5]. Various analysts have considered cordialness of graphs, refer Gallian survey [4]. A conventional number of papers are found with grouping of utilizations in coding theory, radar communication, cryptography etc. A significance bits of knowledge with respect to utilizations of graph labeling is found in Bloom and Golomb [5]. We recognize all documentations and expressing from Harary [6]. We audit some definitions which are utilize in this paper.

A function $f: V \to \{0,1\}$ is called binary vertex labeling of a graph G and f(v) is called label of the vertex v of G under f. For an edge e = (uv), the induced function $f : E \to \{0,1\}$ defined as f : (e) = |f(u) - f(v)|. Let vf(0), vf(1)be number of vertices of G having labels o and 1 respectively under f and let ef(0), ef(1) be number of edges of G having labels 0 and 1 respectively under f^* . A binary vertex labeling f of a graph it is called cordial labeling if $|vf(0) - vf(1)| \le 1$ and $|ef(0) - ef(1)| \le 1$. A graph which admits cordial labeling is called *cordial graph*. A function f is called an absolute mean cordial labeling of a graph G = (V,E), if f:

V(G)
$$\rightarrow \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$$
 is injective and the induced function $f^* : E(G) \rightarrow \{0,1\}$ defined as

$$f^*(e) = \begin{cases} 1, & \text{if } & \left\lceil \frac{|f(u) - f(v)|}{2} \right\rceil \le \left\lceil \frac{q}{2} \right\rceil \\ 0, & \text{otherwise} \end{cases}$$

and satisfies the condition $|ef(0) - ef(1)| \le 1$ is surjective for every edge $e = (u,v) \in E(G)$. A graph is called absolute mean cordial, if it admits absolute mean cordial labeling.

A cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with n vertices is called C_n . The number of vertices in C_n equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it.

The triangular snake graph T_n is obtained from the path v_i by replacing every edge of P_n by C_3 .

An alternate triangular snake $A(T_n)$ is obtained from a path $u_1, u_2, ..., u_n$ by joining u_i and u_{i+1} (alternately) to a new vertex v_i . That is every alternate edge of path is replaced by C_3 .

Friendship graph F_n is one-point union of n copies of cycles C_3

The helm graph H_n is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of

The double triangular snake DT_n consists of two triangular snakes which have a common path.

²Government Polytechnic Rajkot-360003. hirensrchudasama@gmail.com

A double alternate triangular snake $DA(T_n)$ consists of two alternate triangular snakes that have a common path. That is, double alternate triangular snake is obtained from a path v_1 , v_2 ,..., v_n by joining v_i and v_{i+1} (alternately) to new vertices u_i and w_i .

In this paper, we displayed absolute mean cordial labeling of triangular snake T_r , $\forall r \geq 3$, cycle C_s , $s \geq 4$, $s \in 5$ friendship graph F_t , helm graph H_m , alternate triangular snake AT_r , $\forall r \geq 3$, double triangular snake DT_r , $\forall r \geq 3$ ≥ 3 , double alternate triangular snake $DA(T_r)$, $\forall r \geq 3$. For detail outline of graph labeling, we imply Gallian [4].

2. Main Results:

2.1. Theorem. Every triangular snake T_r , $\forall r \geq 3$ is absolute mean cordial graph.

Proof: Let vertices of $T_r = \{v_1, v_2, ..., v_r\}$ and edges of $T_r = \{e_1, e_2, ..., e_{r-1}\}$.

To set up triangular snake T_r from path P_r , connect v_j and v_{j+1} to new vertex u_j by edges $e_{2j'-1} = v_j u_j$ and $e_{2j'} = v_j u_j$ $v_{j+1}u_j \forall j = 1,2,...,r-1.$

Then $|V(T_r)| = 2r - 1$, $|E(T_r)| = 3r - 3$.

We determine vertex labeling
$$f: V(T_r) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \} \text{ as follows.}$$

$$f(u_j) = \begin{cases} 2 \left\lfloor \frac{q}{2} \right\rfloor, & j = 1 \\ (-1)^{j+1} \left[\mid f(u_{j-1}) \mid -2 \right], & j = 2, 3, ..., r-1. \end{cases}$$

For choice of $f(v_i)$ there are two cases:

$$f(v_{j}) = \begin{cases} (-1)^{r} \ 2, & j = 1 \\ (-1)^{r+j+1} \ [\mid f(v_{j-1}) \mid +2 \mid], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \& \ j = \left\lfloor \frac{r}{2} \right\rfloor + 2, \ j = \left\lfloor \frac{r}{2} \right\rfloor + 3,, r. \end{cases}$$

$$(-1)^{r+j+1} \ [\mid 2 \left\lfloor \frac{q+2}{2} \right\rfloor - 2 \left\lceil \frac{r}{2} \right\rceil \mid] & j = \left\lfloor \frac{r}{2} \right\rfloor + 1$$

Case-2: When r is an even $r \ge 4$.

$$f(v_{j}) = \begin{cases} (-1)^{r} & 2, & j = 1 \\ (-1)^{r+j+1} & [\mid f(v_{j-1}) \mid +2 \mid], & j = 2, 3, \dots \left\lfloor \frac{r}{2} \right\rfloor - 1 & j = \left\lfloor \frac{r}{2} \right\rfloor + 1, \ j = \left\lfloor \frac{r}{2} \right\rfloor + 2, \dots, r. \\ (-1)^{r+j+1} & [\mid 2 \left\lceil \frac{q-2}{2} \right\rceil - 2 \left\lceil \frac{r}{2} \right\rceil \mid] & j = \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

2.2. Illustration. A triangular snake T_7 is absolute mean cordial graph.

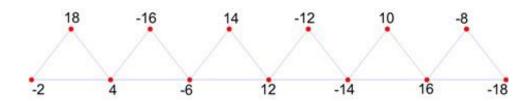


figure 1: A triangular snake T_7 with p = 13 and q = 18 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies.

Therefore triangular snake T_r , $\forall r \geq 3$ is absolute mean cordial graph.

2.3. Theorem. Every cycle C_s , $s \ge 4$, $s \ne 5$ is absolute mean cordial graph. *Proof*: Let C_s be cycle graph with vertex set $V(C_s) = \{v_1, v_2, ..., v_s\}$ and q be number of edges. Clearly p = q = s.

Define vertex labeling function $f: V(C_s) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$ as follows.

Case-1:

Subcase-1: s = 7, 11, 15,.....

$$f(v_j) = \begin{cases} 0, & j = 1 \\ 2, & j = 2 \\ -f(v_{j-1}), & j = 3, 5, 7, ..., (\frac{s-1}{2}) \end{cases}$$

$$j = 4, 6, 8, ..., (\frac{s+1}{2})$$

$$j = (\frac{s+3}{2})$$

$$(s-1), & j = (\frac{s+5}{2})$$

$$(-1)^j [|f(v_{j-1})| - 2] & j = (\frac{s+7}{2})(\frac{s+11}{2}), ..., s$$

$$[|f(v_{j-2})| - 2] & j = (\frac{s+9}{2})(\frac{s+13}{2}), ..., (s-1)$$

Subcase-2: s = 9, 13, 17,.....

$$f(v_j) = \begin{cases} 0, & j = 1 \\ 2, & j = 2 \\ j = 3, 5, 7, \dots, s. \end{cases}$$

$$j = 4, 6, 8, \dots, (\frac{s-1}{2})$$

$$j = (\frac{s+3}{2})$$

$$[| f(v_{j-2})| - 2] & j = (\frac{s+7}{2})(\frac{s+11}{2}), \dots, (s-1)$$

$$-f(v_{j-1}) & j = (\frac{s+5}{2})$$

$$(-1)^j [| f(v_{j-2})| - 2] & j = (\frac{s+9}{2}), \dots, s.$$

Case-2: s is an even.

$$f(v_j) = \begin{cases} 0, & j = 1 \\ (-2), & j = 2 \\ 4, & j = 3 \end{cases}$$
$$-(f(v_{j-2}) + 2), & j = 4, 6, 8, \dots, s \\ (f(v_{j-2}) + 2), & j = 5, 7, 9, \dots, s - 1 \end{cases}$$

2.4. Illustration. A cycle C_{11} is absolute mean cordial graph.

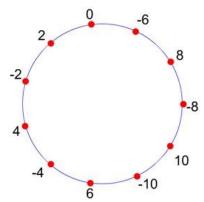


figure 2: A cycle C_{11} with p = 11 and q = 11 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies. Therefore cycle C_s , $s \ge 4$, s = 5 is absolute mean cordial graph.

2.5. Theorem. Every friendship graph F_t , $\forall t \ge 2$ is absolute mean cordial graph. *Proof*: Friendship graph, F_t , is derived by joining t copies of cycle graph C_3 with common vertex. Let $\mathbf{v} = \{v_1, v_2, ..., v_{2t+1}\}$ be the vertex set of F_t and let the vertex at the centre be labelled by v_1 . F_t is a planar undirected graph with $\mathbf{p} = 2\mathbf{t} + 1$ and $\mathbf{q} = 3\mathbf{t}$.

Define
$$f: V(F_t) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$$
 as follows.

Case-1: t is an odd.

an odd.
$$\begin{cases} q-1, & j=1 \\ -f(v_{j-1}), & j=2 \\ 2, & j=3 \\ (f(v_{j-2})-2), & j=4,6,8,...,(t+1) \\ -f(v_{j-1}), & j=5,7,9,...,(2t+1) \end{cases}$$

$$f(v_j) = \begin{cases} \left\lfloor \frac{q}{2} \right\rfloor, & j=(t+3) \ for \ t=3,7,11,... \\ \left\lfloor \frac{q}{2} \right\rfloor, & j=(t+3) \ for \ t=5,9,13,... \\ \left\lfloor f(v_{j-2})-2 \right\rfloor & j=(t+5),...,(2t). \end{cases}$$

Case-2: Subcase-1: t = 2

$$f(v_j) = \begin{cases} q, & j = 1\\ -f(v_{j-1}), & j = 2\\ 2, & j = 3\\ 0, & j = 4\\ -2, & j = 5 \end{cases}$$

Subcase-2: t is an even $t \ge 4$

$$f(v_{j}) = \begin{cases} q, & j = 1 \\ -f(v_{j-1}), & j = 2 \\ 2, & j = 3 \\ [\mid f(v_{j-2}) \mid -2 \mid] & j = 4, 6, 8, ..., t. \\ -f(v_{j-1}), & j = 5, 7, 9, ..., (2t+1). \end{cases}$$

$$\frac{q}{2} \qquad j = (t+2), \text{ for } t = 4, 8, 12,$$

$$\left\lfloor \frac{q-1}{2} \right\rfloor, & j = (t+2) \text{ for } t = 6, 10, 14....$$

$$(f(v_{j-2}) - 2), & j = t+4, ..., 2t.$$

2.6. Illustration. A friendship graph F_5 is absolute mean cordial graph.

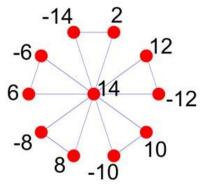


figure 3: A friendship graph F_5 with p = 11 and q = 15 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies. Therefore friendship graph $F_t, \forall t \ge 2$ is absolute mean cordial graph.

2.7. Theorem. Every helm graph H_m , $\forall m \geq 3$ is absolute mean cordial graph. *Proof*: By the definition of helm graph, H_m is obtained from a wheel by attaching a pendant edge at each vertex of the m-cycle. Let $V(H_m) = V_1^S V_2^S V_3$. Where V_1 is the central vertex, $V_2 = \{V_j / 2 \leq j \leq m+1\}$ be the vertices on the m-cycle and $V_3 = \{V_j / m+2 \leq j \leq 2m+1\}$ be the pendant vertices incident with m cycle such that V_{m+j} is adjacent with V_j , $2 \leq j \leq m+1$. It has p = 2m+1 vertices and q = 3m edges.

Define
$$f: V(H_m) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$$
 as follows.

Case-1: m is an odd. **Subcase-1:** m = 3

$$f(v_j) = \begin{cases} q - 1, & j = 1\\ -f(v_{j-1}), & j = 2\\ (-1)^{j-1}[\mid f(v_{j-1})\mid -2 \mid], & j = 3, 4\\ 4, & j = 5\\ -6, & j = 6\\ 2, & j = 7. \end{cases}$$

Subcase-2: m = 5

$$f(v_j) = \begin{cases} q - 1, & j = 1 \\ -f(v_{j-1}), & j = 2 \\ [\mid f(v_{j-1}) \mid -2 \mid], & j = 3, ..., m + 1 \\ -f(v_{j-3}), & j = m + 2 \\ -[\mid f(v_{j-1}) \mid +2 \mid], & j = m + 3 \\ [\mid f(v_{j-1}) \mid -6 \mid], & j = m + 4 \\ (-1)^{j+1}[\mid f(v_{j-1}) \mid -2 \mid], & j = m + 5 \text{ to } 2m + 1. \end{cases}$$

Subcase-3: m = 7, 11, 15, 19,....

$$f(v_{j}) = \begin{cases} q - 1, & j = 1 \\ -f(v_{j-1}), & j = 2 \\ (-1)^{j+1} [| f(v_{j-1}) | - 2] & j = 3, 4, ..., m + 1. \\ (-1)^{j} [| f(v_{j-1}) | + 2] & j = (m+3), ..., (\frac{7m-1}{4}). \\ -2, & j = m+2 \end{cases}$$

$$(-1)^{j+1} [| f(v_{j-1}) | + (m-3)] & j = (\frac{7m+3}{4})$$

$$(-1)^{j+1} [| f(v_{j-1}) | + 2] & j = (\frac{7m+7}{4}), ..., (2m+1).$$

Subcase-4: m = 9, 13, 17, 21,....

$$f(v_{j}) = \begin{cases} q - 1 & j = 1 \\ -f(v_{j-1}) & j = 2 \\ (-1)^{j+1} [| f(v_{j-1}) | - 2] & j = 3, 4, ..., m + 1 \\ 2 & j = m + 2 \\ (-1)^{j+1} [| f(v_{j-1}) | + 2] & j = (m+3), ..., (\frac{7m+1}{4}) \\ (-1)^{j+1} [| f(v_{j-1}) | + (m-3)] & j = (\frac{7m+5}{4}) \end{cases}$$

$$(-1)^{j+1} [| f(v_{j-1}) | + 2] & j = (\frac{7m+9}{4}), ..., (2m+1).$$

Case-2: m is an even.

Subcase-1: m = 4, 8, 12,...

$$f(v_{j}) = \begin{cases} q & j = 1 \\ -f(v_{j-1}) & j = 2 \\ (-1)^{j+1} [| f(v_{j-1}) | - 2] & j = 3, 4, ..., m + 1 \\ 0 & j = m + 2 \\ -2 & j = m + 3 \\ (-1)^{j} [| f(v_{j-1}) | + 2] & j = (\frac{7m + 12}{4}) \\ (-1)^{j} [| f(v_{j-1}) | + 2] & j = (\frac{7m + 16}{4}), ..., (2m + 1) \end{cases}$$

Subcase-2: m = 6, 10, 14,...

$$f(v_{j}) = \begin{cases} q & j = 1 \\ -f(v_{j-1}) & j = 2 \\ (-1)^{j+1} [| f(v_{j-1}) | - 2] & j = 3, 4, ..., m + 1 \\ 0 & j = m + 2 \\ 2 & j = m + 3 \\ (-1)^{j+1} [| f(v_{j-1}) | + 2] & j = (m+4), ..., (\frac{7m+6}{4}) \\ (-1)^{j} [| f(v_{j-1}) | + (m-2)] & j = (\frac{7m+10}{4}) \end{cases}$$

$$(-1)^{j} [| f(v_{j-1}) | + 2] & j = (\frac{7m+14}{4}), ..., (2m+1)$$

2.8. Illustration. A helm graph H_0 is absolute mean cordial graph.

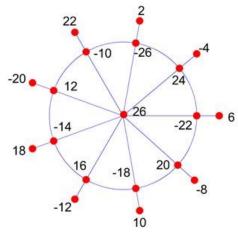


figure 4: A helm graph H_9 is with p = 19 and q = 27 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies.

Therefore helm graph H_m , $\forall m \ge 3$ is absolute mean cordial graph.

2.9. Theorem. Every alternate triangular snake AT_r , $\forall r \geq 3$ is absolute mean cordial graph.

Proof: Let $V(P_r) = \{v_1, v_2, ..., v_r\}$ and $E(P_r) = \{e_1, e_2, ..., e_{r-1}\}$.

To build up $A(T_r)$ we coupling v_i and v_{i+1} (alternately) to new vertex u_i where $1 \le i \le r-1$ for even r and $1 \le i \le r-2$ for odd r.

so,
$$V(A(T_r)) = \{v_i, u_j \mid 1 \le i \le n, 1 \le j \le \lfloor \frac{r}{2} \rfloor \}$$

$$|V(A(T_r))| = \begin{cases} \frac{3r}{2}, & \text{if even } r \ge 3 \\ \frac{3r-1}{2}, & \text{if odd } r \ge 3 \end{cases}$$

$$|E(A(T_r))| = \begin{cases} 2r-1 & \text{if even } r \ge 3 \\ 2r-2, & \text{if odd } r \ge 3 \end{cases}$$

We define vertex labeling

Define
$$f: V(A(T_r)) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$$
 as follows.

Case-1: When r is an odd $r \ge 3$.

$$f(v_i) = \begin{cases} q & i = 1 \\ 2 & i = 2 \\ (-1)^i [| f(v_{i-1}) | + 2], & i = 3, 4, ..., r. \end{cases}$$

$$f(u_i) = \begin{cases} -2 & i = 1 \\ -(q-2) & i = 2 \\ (-1)^{i+1} [| f(v_{i-1}) | - 2], & i = 3, 4, ..., \left\lfloor \frac{r}{2} \right\rfloor. \end{cases}$$

Case-2: When r is an even $r \ge 3$.

$$f(v_i) = \begin{cases} 2 & i = 1 \\ (-1)^{i+1} [|f(v_{i-1})| + 2], & i = 2, 3, ..., r - 1 \\ -f(v_{i-1}) & i = r. \end{cases}$$

$$f(u_i) = \begin{cases} -2 & i = 1\\ (q-3) & i = 2\\ (-1)^i [|f(v_{i-1})| - 2], & i = 3, 4, ..., \frac{r}{2}. \end{cases}$$

2.10. Illustration. An alternate triangular snake AT_7 is absolute mean cordial graph.

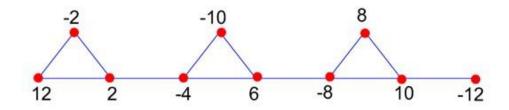


figure 5: An alternate triangular snake AT_7 with p = 10 and q = 12 is absolute mean.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies.

Therefore alternate triangular snake AT_r , $\forall r \ge 3$ is absolute mean cordial graph.

2.11. Theorem. Every double triangular snake DT_r , $\forall r \geq 3$ is absolute mean cordial graph.

Proof: Let $V(P_r) = \{v_1, v_2, ..., v_r\}$ and $E(P_r) = \{e_1, e_2, ..., e_{r-1}\}$.

For construct $D(T_r)$, join v_j and v_{j+1} to the new vertices u_j , w_j by edges $e_{2j-1} = u_j v_j$, $e2j = u_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j v_j$ and $e2j = w_j v_j + 1$, $e2j' - 1 = w_j$

And $|V(D(T_r))| = 3r - 2$, $|E(D(T_r))| = 5r - 5$. We define vertex labelling

$$f:V(D(T_r)) \to \{0,\pm 2,\pm 4,...,\pm 2\left\lfloor \frac{q}{2} \right\rfloor \}$$
 as follows.

Case-1: When r is an odd $r \ge 3$.

Subcase-1: r = 3

$$f(v_j) = \begin{cases} q & j = 1 \\ (-1)^{j+1} [|f(v_{j-1})| - 2], & j = 2, 3 \end{cases}$$

$$f(w_j) = \begin{cases} (f(v_3) - 2) & j = 1 \\ -f(w_{j-1}) & j = 2 \end{cases}$$

$$f(u_j) = \begin{cases} -2 & j = 1 \\ -f(v_3) & j = 2 \end{cases}$$

Subcase-2: r is an odd $r \ge 5$

$$f(v_{j}) = \begin{cases} q & j = 1 \\ (-1)^{j+1} [| f(v_{j-1}) | - 2], & j = 1 \\ j = 2, 3, ..., r \end{cases}$$

$$f(w_{j}) = \begin{cases} (f(v_{r}) - 2) & j = 1 \\ -f(w_{j-1}) & j = 2, 4, 6, ..., r - 1 \\ j = 3, 5, 7, ..., r - 2 \end{cases}$$

$$f(u_{j}) = \begin{cases} -2 & j = 1 \\ (-1)^{j} [| f(u_{j-1}) | - 2], & j = 2, 3, ... \left[\frac{r}{2} \right] \\ -f(u_{j-1}) & j = \left[\frac{r}{2} \right] + 1 \\ (-1)^{j} [| f(u_{j-1}) | + 2], & j = \left[\frac{r}{2} \right] + 2, ..., r - 1. \end{cases}$$

Case-2: When r is an even $r \ge 4$

$$f(v_{j}) = \begin{cases} q - 1 & j = 1 \\ (-1)^{j+1} \left[| f(v_{j-1}) | - 2 \right], & j = 2,3,...,r \end{cases}$$

$$f(w_{j}) = \begin{cases} -f(v_{r}) & j = 1 \\ (-1)^{j+1} \left[| f(w_{j-1}) | + 2 \right], & j = 2,3,...,r - 1 \end{cases}$$

$$f(u_{j}) = \begin{cases} 0 & j = 1 \\ (-1)^{j} \left[| f(u_{j-1}) | + 2 \right], & j = r - 1, j = r - 2,..., 1. \end{cases}$$

2.12. Illustration. A double triangular snake DT_5 is absolute mean cordial graph.

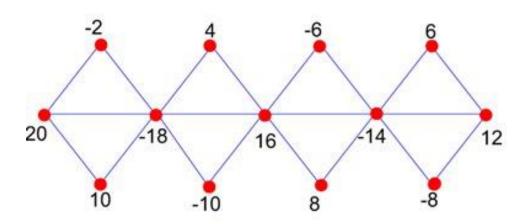


figure 6: A double triangular snake DT_5 with p = 13 and q = 20 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies. Therefore double triangular snake DT_r , $\forall r \ge 3$ is absolute mean cordial graph.

2.13. Theorem. Every double alternate triangular snake DAT_r , $\forall r \geq 3$ is absolute mean cordial graph.

Proof: Let $V(P_r) = \{v_1, v_2, ..., v_r\}$ and $E(P_r) = \{e_1, e_2, ..., e_{r-1}\}$.

To construct $DA(T_r)$, we coupling v_j and v_{j+1} (alternately) to the new vertices u_j , w_j respectively. Let G be a double alternate triangular snake $DA(T_r)$ then

double alternate triangular snake
$$DA(T_r)$$
 $V(G) = \{v_j, u_k, w_k \mid 1 \le j \le r, 1 \le k \le \left\lfloor \frac{r}{2} \right\rfloor\}$ We consider that

$$V(DA(T_r)) = \begin{cases} 2r & \text{when } r \text{ is an even} \\ 2r - 1 & \text{when } r \text{ is an odd} \end{cases}$$

$$E(DA(T_r)) = \begin{cases} 3r - 1 & \text{when } r \text{ is an even} \\ 3r - 3 & \text{when } r \text{ is an odd} \end{cases}$$

We define vertex labeling

$$f: V(DA(T_r)) \to \{0, \pm 2, \pm 4, ..., \pm 2 \left\lfloor \frac{q}{2} \right\rfloor \}$$
 as follows.

Case-1: When r is an odd $r \ge 3$

an odd
$$r \ge 3$$

$$f(v_j) = \begin{cases} q & j = 1 \\ (-1)^{j+1} \left[\mid f(v_{j-1}) \mid -2 \right], & j = 2, 3, ..., r \end{cases}$$

$$\begin{cases} -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 3, 11, 19, ... \\ (-1)^{j} \left[\mid f(w_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$f(w_j) = \begin{cases} f(w_j) = \begin{cases} \frac{r+2}{2} \\ -\left\lceil \frac{r+2}{2} \right\rceil & j = 1 \text{ when } r = 5, 13, 21, ... \\ (-1)^{j} \left[\mid f(w_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(w_j) = \begin{cases} \frac{r+2}{2} \\ -\left\lceil \frac{r+2}{2} \right\rceil & j = 1 \text{ when } r = 9, 17, 25, ... \\ (-1)^{j+1} \left[\mid f(w_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 3, 11, 19, ... \\ (-1)^{j+1} \left[\mid f(u_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 5, 13, 21, ... \\ (-1)^{j} \left[\mid f(u_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 7, 15, 23, ... \\ (-1)^{j+1} \left[\mid f(u_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 9, 17, 25, ... \\ (-1)^{j+1} \left[\mid f(u_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1 \text{ when } r = 1, 15, 23, ... \\ (-1)^{j+1} \left[\mid f(u_{j-1}) \mid +2 \right], & j = 2, 3, ... \left\lfloor \frac{r}{2} \right\rfloor \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1 \\ -\left\lceil \frac{r}{2} \right\rceil & j = 1, 23, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 1, 23, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1, 2, 3, ... \left\lceil \frac{r}{2} \right\rceil & j = 2, 3, ... \left\lceil \frac{r}{2} \right\rceil \end{cases}$$

$$\begin{cases} f(u_j) = \begin{cases} f(u_j) = 1,$$

Case-2: When r is an even r ≥ 4

$$f(v_{j}) = \begin{cases} q - 1 & j = 1 \\ [\mid f(v_{j-2}) \mid -2 \mid] & j = 3, 5, ..., (r - 1) \\ -f(v_{j-1}) & j = 2 \\ [\mid f(w_{j-2}) \mid -2 \mid] & j = 4, 6, ...r \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 1 \\ [\mid f(w_{j-2}) \mid -2 \mid] & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 4, 8, 12, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 1 \\ [\mid f(w_{j-2}) \mid -2 \mid] & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$f(w_{j}) = \begin{cases} (p - 2) & j = 3, 5, ..., (\frac{r}{2} - 1) \text$$

$$f(u_{j}) = \begin{cases} 4 & j = 1 \\ [\mid f(u_{j-2}) \mid + 2 \mid] & j = 3, 5, ..(\frac{r}{2}) \text{ when } r = 6, 10, 14, ... \end{cases}$$

$$j = 3, 5, ..(\frac{r}{2} - 1) \text{ when } r = 4, 8, 12, ...$$

$$j = 3, 5, ..(\frac{r}{2} - 1) \text{ when } r = 4, 8, 12, ...$$

$$j = 2 & j = 4, 6, ..(\frac{r}{2}) \text{ when } r = 4, 8, 12, ...$$

$$-[\mid f(u_{j-2}) \mid + 2 \mid] & j = 4, 6, ..(\frac{r}{2} - 1) \text{ when } r = 6, 10, 14, ...$$

2.14. Illustration. A double alternate triangular snake $DA(T_7)$ is absolute mean cordial graph.

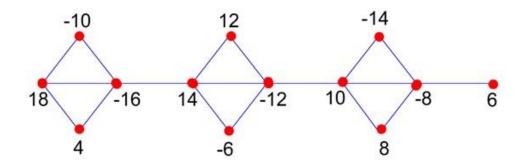


figure 7: A double alternate triangular snake $DA(T_7)$ with p = 13 and q = 18 is absolute mean cordial graph.

Obviously the condition $|e_f(0) - e_f(1)| \le 1$ is satisfies. Therefore double alternate triangular snake $DA(T_r)$, $\forall r \ge 3$ is absolute mean cordial graph.

2.15. Illustration. Cycle C_5 and alternate quadrilateral snake $AQ(S_3)$ are not absolute mean cordial graph.

2.16. Concluding Remark. The current work has contributed a new labeling is absolute mean cordial labeling. we showed absolute mean cordial labeling of triangular snake T_r , $\forall r \geq 3$, cycle C_s , $s \geq 4$, $s \leq 5$, friendship graph F_t , helm graph H_m , alternate triangular snake AT_r , $\forall r \geq 3$, double triangular snake DT_r , $\forall r \geq 3$, double alternate triangular snake $DA(T_r)$, $\forall r \geq 3$. The labeling pattern is shown through representations to more readily comprehend the determined outcomes.

2.17. Acknowledgement

We are very grateful to Professor D. J. Marsonia, he is an assistant professor of government of engineering college Rajkot, who helped us draw 2D graphics with the help of Autocad.

References

- [1] D. G. Adalja, G. V. Ghodasara, Sum divisor cordial labeling of snakes related graphs, *Journal of Computer and Mathematical Sciences*, 9(7), (2018) 754-768.
- [2] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combinatoria*, 23, (1987) 201-207.
- [3] U. Deshmukh, S. A. Bhatavadekar, Cordial labeling of arbitrary supersubdivision of wheel, helm and closed helm, *Journal of combinatorics*, *information and system sciences*, 41(4), (2016) 161-179.
- [4] J. A. Gallian, A Dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, 23, (2020) 1-553.
- [5] S. W. Golomb, How to number a graph, in *Graph Theory and Computing*, R. C. Read, ed., Academic Press, New York, (1972) 23-37.
- [6] F. Harary, Graph theory, reading, Massachusetts, Addison-Wesley Publication, (1969) 1-281.

- [7] V. J. Kaneria, H. P. Chudasama, Absolute mean graceful labeling in various graphs, *International journal of mathematics and its applications*, 5(4), (2017) 723-726.
 [8] S. K. Vaidya, N. H. Shah, Cordial labeling of snakes, *International journal of mathematics and its*
- applications, 2(3), (2014) 17-27.