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ARTICLE INFO ABSTRACT 

 Visual Speech Recognition (VSR) is especially important in situations where 
acoustic signals are distorted, for example, in noisy environments or for 
people with hearing loss. This review aims at identifying the critical difficulty 
that arises from the visually similar phonemes or visemes which greatly affect 
the VSR. Visemes are other phonemes that are visually similar and hence 
pose a challenge when distinguishing them. We discuss the phoneme-viseme 
mapping and the effects of these similarities on VSR in low acoustic 
conditions. Different ways of improving VSR accuracy are described, such as 
data-oriented methods based on machine learning and deep learning 
algorithms, integration of vision with other sensory inputs, and context-
based recognition systems that use linguistic context. We also discuss the 
existing methods of VSR systems including LipNet and LipReading in the 
Wild (LRW) and their drawbacks in practical scenarios. Future directions are 
concerned with the possibility of using both visual and degraded acoustic 
signals, new NN structures, individual VSR systems, and enhancements of 
real-time signal processing. The purpose of this review is to give a clear 
picture of the existing literature on the difficulties and possibilities of 
improving VSR accuracy in a low acoustic environment so that better 
communication technologies can be developed. 
 
Keywords: Visual Speech Recognition (VSR), Visemes, Low Acoustic 
Environment, Machine Learning, Multimodal Fusion. 

 
Introduction 

 
In the field of speech recognition technology, Visual Speech Recognition (VSR) has attracted much attention 
because it can work in situations where acoustic-based systems are problematic. Such environments include 
those with high background noise, low signal quality, or no sound at all – conditions where conventional speech 
recognition systems perform poorly or are completely unreliable (Potamianos, Neti, and Luettin, 2004). VSR 
also has a major role in assisting those with hearing impairment by enabling their chance to use lip reading or 
the visual bluff of the face (Zhou et al., 2021). 
One of the main challenges of VSR systems is the uncertainty of visual signals especially in differentiating 
between visually similar phonemes (visemes). Visemes are subsets of phonemes where they may be acoustically 
distinct, but they look similar because they require lip and mouth postures to create the sounds. For instance, 
the bilabial phonemes /p/, /b/, and /m/ have similar lip-closure when produced and are therefore in the same 
group of visemes (Bear et al., 2017). This is a big issue with VSR systems because there are times when these 
phonemes look very different, and one cannot differentiate them with vision alone. The consequence of this is 
an increase in recognition errors and a decrease in the overall accuracy of the system particularly in a low 
acoustic environment where audio input is either low or unavailable at all (Chung, Senior, & Vinyals, 2016). 
 
Significance of Visual Speech Recognition 
VSR is essential in various applications, such as: 

• Assisting the hearing-impaired: VSR systems help in speech-to-text conversion for the hearing impaired to 
reduce the extent to which they rely on acoustic media for passing information. 
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• Human-computer interaction: Due to complications brought about by noise or the need for silence (for 
instance hospitals or libraries), VSR systems enable interaction with machines or gadgets by way of silent 
speech interfaces (Duan et al., 2020). 

• Surveillance and forensics: The VSR-based lip-reading technologies can be used to synthesize speech from 
the video where audio is missing or of low quality. 

 
Since VSR systems are incorporated into various technologies, the differentiation of visually similar phonemes 
is essential for the effectiveness of the system and its application. This problem is even more evident in low 
acoustic conditions where there is a high dependence on visual information since there are either low or no 
acoustic signals. 

 
Visually Similar Phonemes and Their Impact on VSR 

 
The main issue in VSR is that the movements of the human face during speech are not always unambiguous 
and can include more than one phoneme. Some phonemes are similar in terms of used movements; if two 
phonemes are similar, they are highly overlapping for the visual modality and vice versa for the auditorial 
modality, for instance, bilabial and labiodental phonemes are quite similar. Plosive phonemes for instance /p/, 
/b/, and /m/ involve a closure of the lips and the subsequent release of the closure with a burst of air or a 
stream of airflow which is grossly invisible. This is further extended if labiodental phonemes which involve 
pressing of the lower lip to the upper teeth for example /f/ and /v/ are taken into consideration. 
If the acoustic signature of these sounds is not available, VSR systems are unable to resolve such ambiguities 
and hence the misclassification rates rise. This is known as the viseme ambiguity problem and creates a 
significantly high barrier to attaining high levels of accuracy in realistic VSR applications, especially in low 
acoustic or silent environments (Chung & Zisserman, 2017). 

 
Review Objectives 

 
The primary objectives of this review are as follows: 
1. Analyze the Phoneme-Viseme Relationship: To further investigate how various phonemes are clustered into 

visually similar viseme categories and the difficulties they present to VSR systems in low acoustic 
conditions. 

2. Evaluate Current Approaches to Overcome Viseme Ambiguity: To review current approaches used in 
improving the accuracy of VSR, especially concentrating on techniques such as visual feature extraction, 
machine learning, and multimodal fusion. 

3. Propose Future Directions for Enhancing VSR Systems: To propose possible future directions of VSR 
research, including contextual models, hybrid schemes, and individualized systems, that can eliminate the 
errors resulting from visually similar phonemes and enhance the stability of the systems in practical use. 

4. Provide a Comparative Analysis: To use a set of reference VSR systems to demonstrate how different 
solutions perform in conditions with low acoustic input or noisy environment, and how they address the 
problem of visually similar phonemes. 

By reviewing these areas, this paper will give an overview of the status of VSR technology and suggestions for 
further research and technology development to solve the problem of visually similar phonemes. 

 
Phoneme-Viseme Relationship 

 
Phonemes are the smallest units of the sound of any language and because of their acoustic parameters, it is 
possible to distinguish between word and meaning in spoken language. While phonemes the identification of 
these phonemes as they look like when written are called. The problem with VSR is that many of the phonemes 
that are acoustically different are visually very similar when spoken. This leads to a situation where one or 
several phonemes may appear to be virtually identical as far as the visual signal is concerned, a situation that 
makes it problematic for the VSR system to disentangle between them clearly (Bear et al., 2017). 
Thus in spoken language, lips, teeth, and tongue make different movements as a way of producing other 
different phonemes. However, these movements are not always easily distinguishable enough for identification 
without the use of audio. This visual correlation is especially detrimental in VSR systems that only depend on 
the visual input, for instance, in low acoustic conditions where the acoustic signal is either weak or absent. For 
instance, bilabial sounds like /p/, /b/, and /m/ entail the closure of lips, and consequently, lips cannot help to 
distinguish between the three sounds (Barker et al., 2003). 
 

Table 1. Common Examples of Visually Similar Phonemes Grouped into Visemes 
Phoneme Group Viseme Example Sounds 
Bilabial /p/, /b/, /m/ "pat", "bat", "mat" 
Labiodental /f/, /v/ "fine", "vine" 
Alveolar /t/, /d/, /n/ "top", "dog", "not" 
Velar /k/, /g/ "cat", "go" 
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Dental /θ/, /ð/ "thin", "that" 

Table 1 also illustrates that, for example, several phonemes are grouped into one viseme because of the 
similarity of their articulatory movements. For instance, bilabial phonemes (/p/, /b/, and /m/) are produced 
by the approximation of the lips and because of that, they cannot be distinguished. This is a major problem for 
VSR systems because, although the sounds are phonetically different, the lip movements that generate them 
are identical. 
 
Bilabial Phonemes (/p/, /b/, /m/) 
Bilabial type of phonemes is those in which the lips are blocked and then dropped or in which the breath is 
released or there is a puff of breath within the nostrils. /p/ and /b/ are voiced and have an explosive burst of 
air out of the mouth, /m/ is voiced, and the air is expelled through the nasal cavity (Barker, Ma, & Cox, 2003). 
However, since all three phonemes, require the same initial lip movement the three phonemes are grouped 
under the one viseme. This makes it hard for VSR systems to go between “pat,” “bat,” and “mat” without other 
information as the visual data are lacking. 
 
Labiodental Phonemes (/f/, /v/) 
Labiodental phonemes are made by approximating the lower lip to the upper teeth and passing air through the 
resulting narrow channel. This articulation leads to an almost identical visual configuration for /f/ and /v/. The 
only major distinction is differentiated by the difference in voicing: /f/ is voiceless while /v/ is voiced 
(Potamianos, Neti, & Luettin, 2004). However, VSR systems that depend only on the visual input cannot detect 
voicing and therefore cannot distinguish between ‘fine’ and ‘vine’ based on lip movements. 
Alveolar Phonemes (/t/, /d/, /n/) 
Alveolar phonemes are those for which the tongue contacts the alveolar crest or approximates it, which lies just 
behind the last crown of teeth. Even though/t/, /d/, and /n/ are acoustically distinctive in the sense that /t/ is 
voiceless, /d/ is voiced, and /n/ is nasal, the non-acoustic characteristics of the articulation are similar, and the 
contact point of the tongue with the ridge (Chung & Zisserman 2017). This feature of how the words are 
delivered to VSR systems makes the systems to struggle distinguish between “top,” “dog,” and “not” unless the 
system receives additional information or an audio cue. 
 
Velar Phonemes (/k/, /g/) 
Velar phonemes therefore require the back part of the tongue to come into contact with that part of the mouth 
known as the velum. Speaking of voicing, /k/ is without vocal cords vibration while /g/ is with vibration (Bear 
et al., 2017). Although they are articulated in the back of the mouth, the information visible to a VSR system is 
limited because most of the movement is concealed. The lack of such specification puts more emphasis on other 
signals, including contextual proration or multimodal signals, to differentiate between “cat” and “go.” 
 
Dental Phonemes (/θ/, /ð/) 
Dental phonemes are produced by having the tongue against the upper teeth. The only contrast between /θ/ 
that is represented by the phoneme ‘thin’ and /ð/ as in ‘that is that’ is that one is voiceless while the other is 
voiced (Potamianos et al., 2004). As with other phoneme pairs, their visual depiction is very similar since the 
position of the tongue and teeth is similar. This becomes a problem when trying to distinguish between these 
sounds simply by examining the pictures of the objects that create these sounds. 
 
Difficulties of Viseme Ambiguity in VSR Systems 
The division of phonemes into visemes poses several difficulties for the VSR systems. Since VSR systems 
depend on the extraction of visual features to map visemes to phonemes, misclassifications are common due 
to the ambiguity of visemes in a group. The absence of acoustic information worsens the problem, particularly 
in low acoustic conditions where the system must rely on visual data almost exclusively (Zhou et al., 2021). The 
problem has been addressed by attempts at using multimodal fusion techniques that involve the use of visual, 
auditory, and even contextual information. However, one of the main challenges in the field is the ability to 
differentiate between similar visemes accurately. 
 
Solutions and Future Directions 
To address these issues, researchers have proposed several approaches, including enhancing the techniques for 
extracting visual features, incorporating contextual information, and training models to address the visual 
ambiguity problem. Studies that combine audio, video, and contextual data have been found to improve the 
performance of VSR systems. These methods make use of the fact that different data sources are generally more 
complementary to each other in recognition performance, particularly in difficult conditions (Chung et al., 
2016). 
 
Impact of Visually Similar Phonemes on VSR Accuracy 
The problem of visemes, which are visually like phonemes, is one of the key concerns of Visual Speech 
Recognition (VSR). As mentioned earlier, visemes are the visual equivalent of phonemes; however, because of 
the constraints of the human vocal tract, several phonemes are realized with the same viseme. This issue poses 
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a major challenge to enhancing the precision and speed of VSR systems, especially in situations where audio 
cues are attenuated or non-existent (Bear, Harvey, & Theobald, 2017).  
 
Effect of Viseme Ambiguity on VSR Efficiency 
The presence of multiple phonemes by a single viseme confuses the visual speech recognition systems. When 
visual data is the main or the sole input, this vagueness leads to higher error rates and lower recognition 
performance. However, they fail to differentiate between phonemes that are articulated similarly in the visual 
modality, for instance, /p/, /b/, and /m/ (Zhou et al., 2021).  
 

• Higher Error Levels in VSR Systems 
The problem of visually similar phonemes is one of the main sources of errors in VSR systems because the 
phonemes are often confused with each other. Bear et al., (2017) have established that for VSR systems that 
work in low acoustic environments where audio data is either scarce or completely missing, the error rates 
shoot up by as much as 50% because of viseme ambiguity. This is because, when there is no audio input, the 
system will only have to rely on visual features, which are usually not enough to differentiate between some 
phonemes. 
Furthermore, the problem of mapping one or many phonemes to a viseme causes misclassification of the words, 
especially in real-time speech recognition, in which the system must analyze the visual data instantly. In such 
cases, contextual information and temporal dependencies are often insufficient to resolve ambiguities promptly 
(Chung & Zisserman, 2017). 
 

• Lowered Total Identification Rate 
In low acoustic input conditions like noisy environments or for hearing-impaired users, the use of visual 
information is very important. However, the problem of viseme overlap greatly reduces the accuracy of the VSR 
systems. Although new systems that use deep learning and neural networks have enhanced the VSR precision, 
these systems lack precision when confronted with the uncertainty of visually similar phonemes (Assael et al., 
2016). 
The fact that some visemes are almost indistinguishable from each other also lowers the recognition rate, 
particularly in real-life conditions. For example, in cases where the background noise interferes with the audio 
signal, in crowded places or industrial areas, VSR systems rely more on lip movements. If the system is exposed 
to two words that are phonemically similar but belong to different viseme groups, for instance, “bat” and “pat”, 
then the system will make classification errors (Bear et al., 2017). 
 

• Real-time processing has been known to present several challenges. 
The real-time processing of VSR systems is usually compromised by the necessity to disambiguate visemes in 
the same manner in real-time. Specifically, noise or conditions with little acoustic signal make this difficult. 
For instance, in telecommunication for the hearing impaired, VSR systems have to analyze visual information 
as fast as possible to facilitate communication. However, since there are viseme groups, this process is less 
efficient and takes more time than other approaches to speech recognition (Potamianos, Neti, & Luettin, 2004). 
 

Possible Remedies for Viseme Ambiguity 
 

Solving the problem of viseme ambiguity in VSR systems means creating new methods of its solution, which 
are more complex than the lip-reading methods. Several potential solutions have been proposed to mitigate 
the effects of visually similar phonemes on recognition accuracy: 
1. Multimodal Data Integration: It is also suggested that by integrating audio, visual, and contextual 
information, VSR systems can differentiate between visually similar phonemes. The results of the experiments 
have revealed that the multimodal systems that combine the acoustic signals with the visual input can enhance 
the recognition accuracy by providing additional hints to remove the uncertainty (Zhou et al., 2021). 
2. Contextual Analysis: Other factors like the syntactic structure of the sentence, the frequency of the words, 
and their semantic context can assist VSR systems in minimizing the effects of viseme ambiguity. For example, 
when the system is in doubt as to whether the word is ‘bat’ or ‘pat’, the contextual analysis can help in choosing 
the most probable word based on the other words in the sentence (Chung et al., 2016). 
3. Machine Learning Models: Recent studies in deep learning and neural networks have helped enhance 
the VSR systems’ performance in disambiguating visemes. CNNs and RNNs have been applied for feature 
extraction from visual data and modeling temporal dependencies to enable the systems to differentiate between 
visually similar phonemes (Assael et al., 2016). 
4. Temporal Smoothing: Temporal smoothing techniques allow VSR systems to track sequential 
movements of the lips and other articulators, which give more context to distinguish phonemes. For instance, 
the movement patterns of /p/ and /b/ may be almost identical, but temporal analysis of lip movements can 
reveal differences in the onset and offset that are not discernible through spatial analysis alone (Potamianos et 
al., 2004). 
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The effect of visually similar phonemes on VSR accuracy is a significant problem that needs to be solved to 
increase the efficiency of speech recognition systems in low acoustic conditions. The viseme-phoneme mapping 
results in high error rates and low accuracy in VSR systems especially when implemented in real-time 
environments with noise. Nevertheless, there are problems with integrating multiple modalities, contextual 
analysis, and machine learning that provide solutions to this problem. These approaches are expected to remain 
relevant as technology advances to improve the reliability and effectiveness of VSR systems. 
 
Approaches to Enhance VSR Accuracy in Low Acoustic Environments 
Enhancing VSR performance in low acoustic conditions is a complex problem that has various aspects. 
Different methods such as data based methods, fusion of different modalities and contextual based recognition 
systems have been identified as useful in improving the performance of VSR. All of these approaches deal with 
the issues connected with visually similar phonemes, using sophisticated computational methods and models 
to increase the recognition rate. 
 
Data-Driven Approaches: Machine learning and deep learning 
Several improvements have been made on the kind of machine learning, including the CNNs as well as the 
RNNs, making VSR systems more efficient in the current past. These models can capture small movements of 
the lips which are crucial in discriminating between similar phonemes. 
 

Table 2. Overview of Data-Driven Approaches for Enhancing VSR Accuracy 
Method Description 

CNNs CNNs are designed to automatically extract visual features from sequences of 
lip images. By employing multiple layers of convolutional filters, CNNs can 
capture local patterns in the data, effectively enhancing the recognition of 
minute differences in lip shapes and movements that are often indicative of 
different phonemes (LeCun et al., 2015). 

RNNs (LSTM 
networks) 

Long Short-Term Memory (LSTM) networks, a type of RNN, are particularly 
suited for analyzing temporal data such as lip movements over time. LSTMs 
can maintain long-term dependencies, allowing them to consider the sequence 
of lip movements in conjunction with the temporal context, thus improving the 
ability to differentiate phonemes that might look similar at a given moment 
(Hochreiter & Schmidhuber, 1997). 

 
The use of these approaches has brought about improved VSR accuracy due to implementation of the 
approaches. For example, models employing CNNs and LSTMs has caused the error rate to decrease by 30% 
and this has been useful in challenging situations that do not allow voice input (Assael et al., 2016). 
 
Multimodal Fusion Techniques 
Other information that can be fused may include facial expressions, gestures, head movements, and among 
others; aside from the visual information for enhance the rate of speech recognition. As multiple sources of 
information are integrated, VSR systems are able to resolve the ambiguities resulting from visually similar 
phonemes. 
 

Table 3. Comparison of Multimodal Fusion Techniques 
Fusion Method Description 
Early Fusion This method combines visual data with other sensory inputs before 

analysis. By merging features at the input level, the system can leverage 
complementary information from various sources, improving its ability 
to identify the correct phoneme even when visual signals are ambiguous 
(Baltrusaitis et al., 2019). 

Late Fusion In this approach, different modalities are processed independently, and 
decisions are merged after the analysis phase. Late fusion allows for 
individual strengths of each modality to be highlighted, with the final 
decision making based on a combination of outputs, leading to a more 
robust recognition performance (Kwon et al., 2020). 

 
Multimodal fusion can be valuable to enhance the weak VSR ability especially when the background is distorted 
or noisy thus it could be difficult to obtain a clear visual input that could be used for the recognition process 
(Zhou et al., 2021). Studies show that multimodal VSR systems can attain recognition rates of more than 85% 
in conditions that were previously infeasible for unimodal systems (Potamianos et al., 2004). 
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Contextual Based Recognition Systems 
Contextual recognition systems define the words and phonemes of the context and then apply the same to 
deduce the most probable phoneme when faced with similar visual symbols. This approach employs language 
models and probabilistic framework such as Hidden Markov Models (HMM) to enhance the VSR in real-time. 
 

Table 4. Types of Contextual-Based Recognition Models 
Model Type Description 

N-gram Models N-gram models predict phoneme sequences based on the probability 
of occurrence of previous words. By considering the context of 
neighboring phonemes, these models can significantly reduce 
ambiguity in cases of viseme overlap, enabling the system to infer the 
most likely phoneme based on context (Manning & Schütze, 2000). 

Bayesian Networks Bayesian networks provide probabilistic estimates for phoneme 
selection, incorporating prior knowledge and contextual 
information. This allows the system to make informed decisions 
about phoneme recognition, significantly enhancing VSR accuracy, 
particularly in low acoustic environments (Koller & Friedman, 
2009). 

 
Contextual based recognition systems have shown significant improvement in recognition accuracy some of 
which are as follows: Chung et al. (2016) showed more than 20% improvement in recognition accuracy in 
difficult environment where visually similar phonemes are likely to occur. 
 
The Current State of VSR Systems 
Current VSR technologies have been advanced regardless of significant problems in the difficulty of 
distinguishing between visually similar phonemes in real conditions. Systems like LipNet and LipReading in 
the Wild (LRW) have shown good performance measures in controlled scenarios but fail to perform as well in 
noisy or low acoustic environments which are more realistic. 
 
LipNet 
LipNet is one among the latest developments in VSR that uses deep learning techniques to accomplish lip-
motion based speech recognition. LipNet was introduced by Assael et al. (2016) and it is a system that uses 
CNNs and RNNs to learn about sequences of lip images hence making it learn temporal structure of the visual 
data. The system was trained on a set of 5000 video clips with the possibility to learn subtle differences in lip 
movements corresponding to distinct phonemes. This training approach has resulted in reported recognition 
accuracy of 93.4% in controlled environment, which is quite impressive compared to previous models (Assael 
et al., 2016). 
Nevertheless, as has been noted, an application of LipNet results in low performance in more complicated 
situations, although its effectiveness is 92% in simple conditions. Animation or complex backgrounds, and 
when the audio is full of noise or when there are other objects in the video, for instance in, the model can have 
difficulties in distinguishing between similar phones, for instance, /p/ and /b/. These phonemes, although 
acoustically different, may sound quite alike when emitted, thus receiving poorer performance in terms of error 
when used for practical purposes (Zhou et al., 2021). Therefore, LipNet produces good results in the best 
conditions, however, in a case when the quality of the visual input declines due to specific factors, the efficiency 
is significantly lower. 
 
LipReading in the Wild (LRW) 
Likewise, the LRW dataset is centered on large vocabulary recognition from visual input only. The LRW project 
is an attempt to improve VSR using a larger vocabulary and a wider range of speech patterns, with the use of 
videos that contain people speaking several words in real life situations (Chung & Zisserman, 2016). Therefore, 
by training the acoustic-phonetic mapping on many lip movements for various phonemes, LRW should aid the 
system in visually perceiving speech more effectively. 
Nonetheless, LRW approach also has difficulties like LipNet when the accuracy of the vision recognition is 
largely enhanced. For instance, the system’s performance may be greatly affected by interference from other 
sounds or when the subject’s face is partially occluded. The studies show that even the most successful models 
can have the recognition accuracies of only 50% in the conditions of high VN (Potamianos et al., 2004). This 
underscores the need for more enhancement of VSR technologies, especially in environmental changes. 
In general, the status of VSR systems shows that the task of achieving high accuracy in practical applications is 
challenging. Thus, LipNet and LRW form a basis for future enhancements in VSR; nonetheless they do expose 
the current artifacts of the model to distinguish between adjacent phonemes which are often difficult to 
differentiate in noisy or unpredictable circumstances. Future work should therefore focus on enhancing the 
stability of these models; either by using more elaborate data augmentation techniques, or by fusing the 
different modalities and using better contextual analysis mechanisms. 
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Future Directions 
Some of the promising directions that may further advance the development of VSR as a field are the following: 
Several of them can dramatically improve the effectiveness of VSR systems, particularly, in the discrimination 
of the phonemes that are similar in visual appearance. The subsequent sections of this paper describe some of 
the most important directions for the further development of VSR technology. 
 
Hybrid Models 
The most significant opportunity for the development of more accurate VSR systems seems to be the use of 
combined models based on both visual and degraded acoustic information. This approach is designed to take 
advantage of the characteristics of visual information while minimizing the shortcomings associated with low 
acoustic environments. The literature review shows that multimodal systems can perform better than single-
modality systems because they offer supplementary information (Zhou et al., 2021). 
For example, when available, using lip movements as the visual input together with the acoustic signals can 
form a better recognition system. Among the strategies such as the late fusion where the results from the audio 
and visual recognition models, some of them could be implemented to enhance the final decision-making step 
as recommended by Wang et al., (2018). Also, the context information extracted from the acoustic signal can 
be used to help the model to disambiguate the visually similar phonemes. The combination of these approaches 
might help VSR systems to function better in real-world environments, where noise and other disturbances 
negatively affect acoustic signals. 
 
Advanced Deep Learning Models 
Future work in deep learning, especially with CNNs and RNNs, can be expected to improve SR, more 
specifically VSR. Further work should be devoted to the creation of models that would be able to track minor 
changes in lip movements, in conditions that are difficult to observe. New efficient approaches such as attention 
mechanisms, where the model is trained to focus on some parts of the input data that contribute to the 
recognition of visemes, can enhance the system’s discriminative ability of similar visemes (Vaswani et al., 2017). 
In addition, there is an opportunity to create GANs for data augmentation, which will create training data that 
will resemble different environmental conditions and lip movements. This would help to increase the stability 
of the model and diversify the exposure to various conditions during training, therefore improving the model’s 
performance in practice applications (Gulrajani et al., 2017). 
 
Personalized VSR Systems 
Two important directions for future studies have been identified, including the design of VSR systems specific 
to a person’s speech and lip movements. Such systems could use user-specific information to adjust the 
recognition process to the user’s articulation, lip contour, and speaking patterns. Personalization could 
improve accuracy by helping the system to concentrate on the viseme configurations relevant to the particular 
speaker (Wang et al., 2020). 
The use of user feedback loops in VSR systems would complement the learning process from system 
performance to improve recognition continually thus improving the performance of the system in the future. 
Some of the personalization strategies can also be beneficial for the applications for speech-impaired people or 
those who have a heavy accent; such users have different visual speech, which is often not detected by the 
models. 
 
Real-Time Processing 
Finally, it is essential to increase the speed of computation to achieve real-time VSR for practical applications 
of this technology. The current models are computationally intensive and therefore not suitable for real-time 
applications such as speech recognition for the hearing impaired (Yu et al., 2021). 
More studies could be made on how to enhance the models that are undergoing so that the sizes of neural 
networks could be reduced by employing strategies such as model simplification and model to a fixed point. 
Moreover, exploring edges related to new models that suggest data processing occurs locally to minimize 
response time and rely more on the device (Zhang et al., 2020). 
 

Conclusion 
 

The study of visually similar phonemes is a major concern in the VSR, especially in low acoustic conditions. As 
the technology of VSR develops, the knowledge of phoneme-viseme relation is vital for improving the efficiency 
and effectiveness of the tool. In this review, the author of the paper has described the impact of the availability 
of the phonemes that are visually very much like that of the VSR performance and expressed that due to 
the presence of these viseme groups, errors are more likely to take place and real-time processing capability of 
the VSR is not quite effective. 
New approaches to improving the accuracy of VSR rely primarily on data-driven techniques such as machine 
learning and deep learning algorithms that demonstrate high capability to differentiate small movements in 
the lip area. In addition, the attempts to employ multimodal fusion, contextual recognition, and personal VSR 
systems will help to enhance the VSR systems’ effectiveness in the practical context. 
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In the future, better methods to differentiate between visually similar phonemes will be possible using both 
visual and degraded acoustic signals, and better architectures for deep learning and real-time processing. These 
systems’ development makes it possible for those who work or live in noisy regions or suffer from hearing 
impairments in the current speech recognition technology to have a shot at enhanced communication. 
In conclusion, it is possible to ascertain that for the present VSR is among the continuously advancing 
technologies and much more investigation must be carried out to enhance the reliability of the method and 
expand the spectrum of its usage. Understanding the challenges of visually similar phonemes and opening for 
new solutions, the future of VSR can enhance the communication experiences for all users, and thus, close the 
gap between the auditory and visual channels in speech recognition. 
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