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1. Introduction 

 
As visual data becomes increasingly prevalent, the need for effective image classification techniques is a 
growing concern. Image classification refers to the process of categorizing images into different classes based 
on their content or features. This is a challenging task due to the inherent complexity and variability of images, 
such as changes in lighting, scale, orientation, and occlusions. In addition, images often contain redundant and 
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irrelevant information, which can complicate the classification process. With the rise of social media platforms 
and the ubiquity of smartphones and cameras, there has been an exponential increase in the production of 
visual data. This has sparked advances in algorithms and systems for the analysis of images, videos, and other 
visual modalities, resulting in a once-dominant field for artificial intelligence (AI) technologies to achieve 
success. In conjunction with efforts to reduce the cost of data collection, storage, and processing, there is a need 
for the development of systems capable of classifying visual data with high accuracy and efficiency. Over the 
past two decades, there have been immense efforts devoted to building image analysis systems both in 
academia and industry. Traditional image classifiers generally operate on a two-step paradigm, where low-level 
features or descriptors are first extracted from images, followed by the use of classifiers relying on these 
extracted features. Feature extraction is a crucial step in image classification. 
 
Conventional feature extraction techniques rely on handcrafted low-level descriptors to model the content or 
structure of images. These include color-based descriptors such as color moment and color histogram, texture-
based descriptors such as Gabor wavelet and local binary pattern, and shape-based descriptors such as Hu 
moment and Fourier descriptor. Although these manually designed descriptors achieve satisfactory 
performance for many applications, there are several limitations. Such descriptors may not be able to describe 
the overall information of images due to their local characteristics. They also neglect the high-level concepts 
contained in images, such as objects and scenes. Moreover, the descriptive power and robustness against noise 
or occlusion of the handcrafted descriptors are usually limited. In recent years, deep learning models have 
emerged as a new kind of model to extract features automatically from images. Deep learning is a subfield of 
machine learning that comprises a family of models with multiple levels of abstraction. In visual data analysis, 
deep learning generally refers to the use of deep neural networks with more than five layers, which grew out of 
decades of work in various fields such as artificial neural networks (ANNs), computer vision, cognitive 
neuroscience, and information theory. Deep learning has many variants including deep fully connected neural 
networks (CNN), deep convolutional neural networks (CNN), deep belief networks (DBN), deep recurrent 
neural networks (RNN), deep Gaussian-based networks (DGN), and so on. Of these, DCNN is the most 
successful and well-known architecture, demonstrating unrivaled performance in various applications. The 
purpose of this research is to examine current deep-learning methods used for image classification. The 
following section presents a review of the literature on previous works related to the visual data analysis field, 
followed by a discussion of research objectives. 
 
1.1. Background and Significance 
In recent years, deep learning approaches have gained substantial attention and prominence in the fields of 
machine learning and computer vision. With the rapid proliferation and widespread adoption of smartphones, 
laptops, and cameras, the amount of visual data being generated is increasing at an exponential rate. According 
to a report, the visual data size has increased from 8PB in the year 2010 to more than 44ZB in 2020 and is 
expected to reach 175ZB by. In addition, the increase in the number of cameras installed worldwide has made 
it critical to analyze the visual data being generated. A surveillance camera generates 30GB of data every hour, 
and analyzing this data manually is extremely cumbersome and tedious. Therefore, automatic approaches to 
analyzing visual data are imperative to handle large-scale data and information. Image classification is one 
such task that aims to assign predefined class labels to given test images based on their visual contents. Search 
engines like Google, Yahoo, and MSN utilize image classification techniques to return images based on queried 
keywords. 
 
Image classification has been an extensively researched theme in the field of computer vision for the last three 
decades. A variety of hand-crafted feature extraction approaches such as Scale Invariant Feature Transform 
(SIFT), Histogram of Oriented Gradients (HOG), and Color Histogram have been proposed, followed by their 
association with different classifiers like k-nearest neighbor (kNN), decision tree, and support vector machine 
(SVM). Combined, such approaches are known as traditional approaches or shallow methods. Even though 
traditional approaches provide good performance on small databases, their performance deteriorates on large-
scale heterogeneous visual data. Good performance is not only a requirement but also a necessity for effective 
large-scale visual data analysis. Moreover, traditional approaches are also computationally expensive, and the 
required time increases with an increase in the size of the image data. Deep Convolutional Neural Network 
(CNN), a class of deep learning approaches, has gained much attention and has emerged as the state-of-the-art 
method for large-scale image classification. DCNNs are hierarchical multi-layer networks, composed of various 
layers like the convolutional layer, pooling layer, and fully connected layer. The end-to-end structure of DCNN 
allows automatic learning of representative feature maps from training images, and the utilization of several 
hidden layers enables capturing hierarchical semantics. Exploitation of spatial correlations, translation 
invariance, and local connectivity present in objects is achieved through the convolutional layer, making the 
architecture suited for visual data. In addition, deep models are capable of training on readily available high-
performance Graphics Processing Units (GPUs), making fast learning of large-scale networks possible. With 
several advantages, a surge of interest in deep learning approaches for visual data analysis and understanding 
has been observed, and state-of-the-art performance has been demonstrated on several benchmarks. 
 



                                                            Manikanth Sarisa, et al,/ Kuey, 28(4) 7863                                                           333      

 

1.2. Research Objectives 
The primary objective of the research is to conduct a comprehensive review of current deep learning techniques 
applied to image classification and to identify potential areas for future investigation. This will involve an in-
depth analysis of various algorithms, models, and architectures that have been successfully implemented for 
image classification tasks. Attention will be given to the strengths and weaknesses of each approach, as well as 
the challenges that remain to be addressed. A secondary objective of the research is to investigate a specific 
deep-learning approach to image classification and to implement it on a publicly available dataset. This will 
involve selecting a suitable dataset, preprocessing the data, and training a deep-learning model for image 
classification. The performance of the model will be evaluated and compared to that of other approaches, and 
the results will be discussed in the context of the broader research objectives. 
 
2. Foundations of Deep Learning 
Deep learning, as a subset of machine learning, interconnects artificial intelligence and data science. It implies 
the use of large datasets and processing by multiple layers of nodes (algorithms), which deal with and relate to 
characteristics, patterns, and other properties of the data. Networks are represented through an architecture 
formed by nodes (neurons) in which a semi-random model is generated. By applying a deep learning approach, 
the model can be improved through training based on the dataset, building the ability to extract useful insights 
from a given dataset. Neuroscience inspired the implementation of neural networks, aiming to model the 
brain's cognition by optimizing performance through a network of edges connecting processing nodes. Nodes 
are in charge of analyzing information by weighting and biasing its inputs, utilizing an activation function that 
assesses this value to define if it should be propagated to the following layers in the network. Gathering many 
edges and nodes forms a connected network which, in its shallowest form (one layer of nodes), can only classify 
data by linear combinations of inputs. Additionally, over the edges' weights and nodes' biases, there is a global 
bias applied to each layer that impacts all the nodes. Enhancing this basic architecture with additional 
connected layers increases the level of abstraction regarding the latent features of the data. 
 
The architecture of deep learning networks can either be feed-forward or feedback. In feed-forward networks, 
information flows from the input layer, feeding it ahead in the network until a decision is output or a prediction 
is made. In feedback networks, information can also propagate back to prior layers, forming a closed loop that 
recurrently redistributes the information. Regardless of the architecture definition, network training can 
generally be separated into two categories: supervised learning and unsupervised learning. In supervised 
network learning, a labeled dataset is fed into the network for training, and the output is compared to the 
expected one. After that, adjustments are made to improve the resulting prediction. In unsupervised learning, 
no prior labels are needed for the data input during training. Still, clear expectations on the performance of the 
network or measured outputs are necessary after training. Thus, only the model is trained, permitting the 
inference of properties of the data using latent features as proxy inputs. 
 
The interconnected edges of the network form a weight matrix that defines the distribution of data inside the 
network and the eventual learning of specific patterns taught by training. In this manner, weights are iteratively 
adjusted by the backpropagation algorithm that computes the gradient of the expected cost/junction (loss 
based on the difference between the expected class and the predicted one) concerning weights. The calculated 
gradients are subsequently employed to adjust the weights to minimize the loss function. There exists a variety 
of loss functions, whereby the one used is defined by the training problem and the underlying architecture. On 
the other hand, to mitigate the overfitting problem regarding a dataset used for training, different methods can 
improve network generalization capabilities. Emerging from the former scientific community, a subset is 
composed of model selection techniques. These include cross-validation, early stopping, weight decay, data 
augmentations, and dropout; more recently emerging dropout-type methods include freeze-out and repeat 
dropout. Alternatively, boosting and bagging are techniques used to involve multiple models without enforcing 
the models' properties. 
 
2.1. Neural Networks 
As one of the main architectures used in deep learning, neural networks have been a critical area of exploration 
across different research domains and industrial applications. Most neural networks used in the deep learning 
field are based on the idea of the artificial neuron proposed by McCulloch and Pitts in 1943. Artificial neurons 
mimic the behavior of biological neurons. These biological neurons receive inputs from dendrites, sum them, 
and produce an output spike through the axon if they surpass a firing threshold. A similar approach was 
proposed to design artificial perceptron neurons. Each artificial neuron has several inputs with associated 
weights, which are summed once multiplied by a step function. 
 
Neurons were the initial basis for the design of neural architectures. Perceptrons are the simplest neural 
architectures, composed only of this simple neuron design. In perceptrons, inputs are fed into an 
interconnected layer of perceptron neurons, whose output can be linked to other further layers of perceptron 
neurons. The outputs of this architecture are binary. To use them efficiently and obtain an outcome, it is 
important to solve the first problem, which is the weights optimization. Initially, Rosenblatt presented the 
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perceptron learning rule to limit the weights and construct a simple quadratic convergence function. However, 
this learning rule does not provide guaranteed convergence to the solution in many situations. Later on, 
Widrow and Hoff introduced the least mean square (LMS) approach based on the concept of image errors. They 
performed batch learning on this neural architecture. Convergence is guaranteed, which is a major advantage. 
A solution with more associated neurons and simple mathematical structures was needed to solve highly 
complex problems. This architecture was proposed by Nils Aall Barricelli in 1961. The architecture named 
"Multi-Layer Network" (MLN) consists of a perceptron connected to further hidden layers of perceptrons. To 
optimize the weights of a multi-layer architectural design, learning rules were required to decompose the task. 
A well-known backpropagation algorithm was inspired by the adjustable coefficients of multi-layer analog 
controlled systems proposed by Paul Horowitz. This multi-layer neural network is the architecture broadly 
employed in the deep learning field.  
 

Fig 1 : Deep Learning Modeling Techniques 

 
 
2.2. Convolutional Neural Networks (CNNs) 
Convolutional neural networks (CNNs) emerged as a transformative architecture, significantly advancing the 
field of image classification. This model, a subtype of deep neural networks (DNNs), initially gained widespread 
attention after securing the top position in the ImageNet Large Scale Visual Recognition Competition in 2012. 
Its remarkable performance in targeting image classification tasks and its versatile design for application in 
various domains further enhanced its appeal. The essence of CNNs lies in their mimicked functionality of the 
human visual perception system. Their architecture mimics the layered structure of vision, comprising neurons 
organized in multiple layers and selectively responsive to various visual stimuli. CNNs capitalize on the spatial 
structure of images, leveraging local connectivity via convolutional filters to learn distinctive features. These 
learned features are then utilized as inputs for fully connected layers, which yield final classifications. CNNs 
exhibit high efficiency in handling image data, utilizing considerably fewer parameters than conventional 
neural networks. 
 
An integral aspect of the CNN architecture is its hierarchy composed of three types of layers: convolutional, 
pooling, and fully connected. Convolutional layers can be viewed as sliding a window with learnable filter 
weights across an input or previous feature value map, where neurons in the section share the same weights. 
This learning process adapts the filter to extract certain features. The pooling layer, following the convolutional 
layer, randomly selects or averages a subset of values in a specific section of a feature map, enhancing 
robustness against input noise and variations in translation, rotation, or scale. Finally, the fully connected layer 
flattens all previously learned features into a one-dimensional vector. Neurons in this layer are connected to all 
inputs, forming an abstraction of the represented features and yielding the final classification. After the last 
layer, a non-linear activation function is applied to augment the model's expressiveness, with the softmax 
activation function widely employed for multi-class classification tasks. Training a CNN model involves 
optimizing its parameters to minimize a specific cost function through backpropagation and an optimization 
algorithm. Two essential characteristics of CNNs contribute to a reduced risk of overfitting during training: the 
weight sharing of neurons in a convolutional layer and the pooling operation. The weight sharing of neurons in 
a convolutional layer restricts the number of free parameters to optimize, significantly reducing the 
computational load, especially for images with large resolutions. Pooling layers further decrease the input to 
subsequent layers while retaining critical information, collectively enhancing robustness against input noise 
and lowering the dimensionality of the learned parameters. 
 
2.3. Recurrent Neural Networks (RNNs) 
As the field of deep learning continues to evolve, researchers are exploring new architectures and techniques 
to improve the performance and applicability of neural networks. One promising area of exploration is based 
on recurrent neural networks (RNNs), which are particularly effective for tasks involving sequential data. RNNs 
are a type of neural network architecture that is specifically designed to process sequential data. Unlike 
traditional feedforward neural networks, which treat each input independently, RNNs maintain a hidden state 
that is updated at each time step of the sequence. This hidden state serves as a memory of the past inputs, 
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allowing the network to model temporal dependencies in the data. The basic architecture of an RNN consists 
of an input layer, a hidden layer with recurrent connections, and an output layer. The input layer receives a 
sequence of inputs, which are transformed by a weight matrix and passed to the hidden layer. The hidden layer 
applies a non-linear activation function to the weighted sum of its inputs, and the output is computed as a 
weighted sum of the hidden state. One of the key features of RNNs is their ability to process variable-length 
sequences. This is achieved by unrolling the network in time and treating each time step as a separate layer in 
a feedforward network. The weights of the network are shared across all time steps, which allows the network 
to generalize to sequences of different lengths. Because of this, RNNs can be applied to a wide range of tasks, 
including speech recognition, natural language processing, and video analysis. Despite their success in 
modeling sequential data, RNNs have some limitations. One of the main challenges is the vanishing and 
exploding gradient problem, which makes it difficult to train RNNs with long sequences. This problem arises 
because the gradients of the loss concerning the weights can become very small or very large as they are 
backpropagation through time. 
 
To address these challenges, several variations of the basic RNN architecture have been proposed. One of the 
most popular variants is the long short-term memory (LSTM) network, which uses a more complex hidden 
state that includes input, output, and forget gates. These gates control the flow of information into and out of 
the cell state, allowing the network to store information for longer periods. This architecture has been shown 
to perform well on a variety of sequential tasks, including language modeling and speech recognition. Another 
effective approach to improving the performance of RNNs is to use attention mechanisms, which allow the 
network to selectively focus on specific parts of the input sequence. This helps the network deal with long 
sequences and capture important features that may be missed by vanilla RNNs. Attention mechanisms have 
been successfully applied to a wide range of tasks, such as image captioning and machine translation. In 
conclusion, RNNs are an elegant extension of standard feedforward neural networks for modeling sequential 
data. Since their inception, many variants such as LSTMs and GRUs have emerged to better combat the issues 
of training RNNs. More recently, attention mechanisms have further improved the performance of RNNs on 
information-heavy sequential tasks. 
 
Recurrent Neural Networks (RNNs) represent a sophisticated advancement in neural network architectures 
designed to handle sequential data by maintaining a hidden state that captures temporal dependencies. Unlike 
traditional feedforward networks that process inputs independently, RNNs update their hidden state at each 
time step, enabling them to model sequences of variable lengths effectively. However, RNNs face challenges 
such as the vanishing and exploding gradient problems, which complicate training with long sequences. To 
overcome these issues, variants like Long Short-Term Memory (LSTM) networks have been developed, 
incorporating input, output, and forget gates to manage information flow and extend memory capabilities. 
Additionally, attention mechanisms have further enhanced RNN performance by allowing the model to focus 
selectively on different parts of the input sequence, improving its ability to handle complex tasks such as 
language modeling and machine translation. Together, these innovations have significantly advanced the utility 
and effectiveness of RNNs in processing sequential data. 
 
Equation 1 : Gradient Descent Optimization  
 

 
 
3. Image Classification Techniques 
Image classification, aiming to categorize images into predefined classes, is fundamental to computer vision. 
Conventional approaches like KNN, SVM, and MRF, while foundational, are often limited in performance. In 
contrast, deep learning, particularly CNNs, has revolutionized image classification. Traditionally, image 
classification relied on hand-engineered features like color histograms or edge maps. Classifiers like KNN, 
SVM, and MRF used these features. While effective for simple tasks, these methods struggled with diverse 
databases and complex scenes. With the rise of large datasets and powerful GPUs, research momentum shifted 
to more data-driven learning methods. 
 
Deep learning took center stage in computer vision, particularly CNNs, which process images hierarchically 
using alternating convolutional and pooling layers. These layers extract local and global features, improving 
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classification performance. CNNs excel at representing translation-invariant features, unlike traditional 
methods sensitive to localization. CNNs, originally designed for grayscale images, were adapted for color 
images. Image classification pipelines consisted of a feature extraction network and a classifying network, with 
successful implementations and publicly available pre-trained models. Concerns about network architecture 
growing in complexity were mitigated, as deeper networks showed better performance even with more 
parameters. Furthermore, CNNs improved robustness against rotation, distortion, and occlusion compared to 
traditional methods. Most research endeavored to find optimal networks for a specific dataset. Fine-tuning pre-
trained models on new datasets reduced training costs. Artificial networks mimicked the human visual system's 
three-layer hierarchical feature extraction. CNNs, pre-trained on the ImageNet database, achieved state-of-
the-art results in image classification and feature extraction on diverse datasets. This latent space 
representation approach facilitated effective representation transfer across domains and tasks. While transfer 
learning concepts existed since the 1990s, recent advances in deep learning and CNNs sparked renewed 
interest. Past experiments focused on SVM classifiers. Current investigations seek to deepen understanding of 
properties responsible for effective transfer. 
 
3.1. Traditional Methods vs. Deep Learning 
Image classification serves as a connective bridge between the visual and numerical domains. Traditionally, 
handcrafted image features such as edges, textures, color histograms, and SIFT were considered the norm. 
However, since 2012, database-associated features and deep learning have surged in popularity. On ImageNet, 
consumers noticed the surprising performance of deep neural network classifiers that mitigated the vanishing 
gradient issue through stochastic gradient descent (SGD), filters starting from convolutions with suitable initial 
values, and pooling operations. Their adaptive learning rates via RMSprop or AdaGrad variants yielded ever-
acting non-stationary optimization processes directly on large and obtuse functions. To benefit from the large 
labeled datasets in the back end, pre-training techniques were adopted, which involved stochastic unsupervised 
training through the forward paths of the convolution layers or the whole network before fine-tuning the top 
classifier with back-propagation. These techniques still yield valuable features for SVM or nearest-neighbor 
classifying in the absence of labeled training samples. Despite the apparent simplicity of these operations, they 
drastically impacted the performance of classifiers applied to trained databases. 
 
To capitalize on the pre-trained models and boost system performance, two common industrial adoption 
techniques were implemented: unfreezing layers to fine-tune deeper convolutions on smaller databases, or 
freezing deeper convolutions and feeding features generated by current filters to SVM with median complexity. 
Recognizing the need for workable features, the domain transfer techniques were employed, alongside the 
traditional bag-of-words visual vocabulary methods or the recent Fisher vectors within Gaussian Mixture 
Models. In light of the recent resurgences of professional AI-for-all systems at the foreground of social networks 
and innovative smart devices, this treatise first presents conventional machine learning solutions and their 
popularity challenges by deep learning methodologies applied on large-view databases. 
 
3.2. Transfer Learning 
The image classification landscape is diverse, with innumerable categories and vast volumes of data generated 
every second. As the dataset grows, training a deep neural network from scratch becomes more daunting, 
usually demanding specialized hardware and extensive time. Maintaining and optimizing the training process 
adds further challenges. In such situations, a model trained on a similar task can be a significant advantage. 
Fine-tuning a pre-trained model adapts it to a new task or dataset with remarkable efficiency. This adaptable 
skill is called transfer learning. This section delves into transfer learning techniques, detailing their utility and 
scope. Transfer learning is transferring knowledge acquired through one task to another. It has gained traction 
due to the need for a machine-learning model to predict any graph with real-world applicability, with popular 
prediction tasks being text classification and image classification. Tasks are often diverging from those in data 
and prediction capabilities, while datasets may be limited or noisy. For such scenarios, transfer learning 
techniques can be used to predict or extract data from images with limited or no prior training datasets. 
Transfer learning is better than starting from scratch or training highly task-specific models, and it can be 
collaborative and spillover across disciplines. While there is a vast space of candidates in transfer learning, the 
approaches in nature - "How transferable and similar are the source and target tasks?" - and its realizations in 
predictive analytics - "What methods to transfer?" - are easy to categorize. 
 
Visual data analysis necessitates robust deep learning methods to achieve acceptable performance reliably. 
Such methods should be insensitive to noise, occlusion, viewpoint change, and deformations while invariant to 
modifications such as cropping, translation, or low contrast. For the complicated dynamics of visual data 
analysis tasks, generalization from diverse tasks with a varying number of classes is crucial. Image classification 
is the most widely explored visual data analysis task in deep learning, and it is also the basis for higher-level 
data analysis tasks such as object detection and image retrieval. In object detection, images are annotated by 
their bounding boxes, and tasks may have a much larger number of classes than those in datasets, while images 
may have a complicated inner visual category hierarchy. This renders the assumption of i.i.d. (independent and 
identically distributed) of training and testing data invalid. The best-known deep learning architecture, the 
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convolutional neural network (CNN), was trained from scratch for image classification. This might not be 
feasible for many categories and datasets, recasting image classification into a multi-class problem. 
Nonetheless, CNNs have been trained on a large database like ImageNet. Thanks to the varied classes and 
images, CNNs trained on ImageNet have learned generic visual concepts and features that are shared across 
datasets and different computer vision tasks. Fine-tuning a pre-trained CNN model on ImageNet for a specific 
dataset or task with a small number of labeled samples is a promising transfer learning technique. Such models 
usually outperform those trained from scratch and require less training time and labeled data. Transfer 
learning can be attempted to extract and analyze hidden visual concepts modeled by various activities. 
 

Fig 2 : Transfer Learning Knowledge 
  

 
 
 
4. Recent Advancements in Deep Learning 
Deep learning, a subset of machine learning techniques based on artificial neural networks with representation 
learning, has gained popularity in recent years, especially with the availability of a tremendous amount of visual 
data on the internet and the rapid progress in deep learning hardware. The paper briefly summarizes some 
recent and key developments in deep learning with a focus on visual data and image classification to analyze 
the future of visual data analysis. Attention mechanisms have advanced rapidly in the domains of image and 
video classification. Attention is a key concept studied in neuroscience and psychology to unravel the 
perception of objects and scenes in visual data. In computer science, attention was originally considered to be 
an information bottleneck to reduce the burden of understanding complicated objects and scenes. Recently, 
attention mechanisms have emerged in visualization tasks, such as text translation, image understanding and 
generation, and video comprehension. Attention mechanisms process separate information streams with 
attention filters to highlight the critical visual characteristics; simultaneously, the remaining data and 
attributes are discounted and eventually neglected as the image relevant to text queries. 
 
Attention models were initially designed for text-based tasks and were directly transferred to visual domains 
with several restrictions. Subsequently, image-specific attention networks were designed for image captioning 
and image question-answering tasks by coupling filters, mechanisms, and visual characteristics to textual 
attributes and semantic properties. The video intelligence branch began to develop attention mechanization to 
select video segments salient to given questions or textual queries while neglecting other irrelevant sequences. 
Multimodal attentional networks were then researched, which focused on developing complex interactions 
between vision and language for image-text or video-text identification and retrieval. GANs are learning 
mechanisms where two neural networks compete with each other. A generator network creates fake data, while 
a discriminator network distinguishes between real and fake data. They are trained simultaneously, improving 
each other's performance. GANs were originally designed for image generation from random latent variables 
and subsequently extended to various data types, such as text, image, audio, and video, and complex data 
structures involving multimodal inputs and outputs. GANs were initially designed to generate images without 
supervision and were used in many image transformation tasks with paired images to hone the transformation 
procedure. 
 
4.1. Attention Mechanisms 
Attention mechanisms have been a groundbreaking advancement in image classification tasks and computer 
vision problems. Traditionally, convolutional neural networks (CNNs) fully fed all information from their input 
features. This method paid equal attention to the input regardless of importance or relevance. Human visual 
systems, however, focus on analyzing certain important visual data while ignoring other information for more 
resource-efficient processing. Inspired by this biological approach, attention mechanisms selectively enhance 
important features regarding their relevance for the learning task ahead, while diminishing less relevant 
information. Such selective feature processing thereby enhances the network's learning ability for visual data. 
This technology also enhances the interpretability of CNN models by producing attention visualization maps 
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that indicate where the models focus on analyzing images. As a result, attention mechanisms have become 
popular in deep learning research. While most of the attention-related works focus on text inputs in natural 
language processing tasks, new approaches have been proposed in recent years for the incorporation of 
attention mechanisms in image classification and other computer vision tasks. 
 
Attention mechanisms can be generally categorized into spatial attention, channel attention, and their 
combination. Spatial attention enhances important spatial regions regardless of their input channels. In this 
case, where to focus on is spatially determined. Channel attention focuses on analyzing certain channels of 
input features regardless of their spatial position. In this case, a specific feature channel to focus on is 
determined. Both variants can simply be efficiently appended to CNN architectures. By viewing attention as a 
mechanism to enhance feature representation learning on a specified task, attention mechanisms can be 
applied to any CNN architecture trained on any task with ease. 
 

Fig 3 : Deep Learning Attention Mechanism in Medical Image Analysis 

 
 
4.2. Generative Adversarial Networks (GANs) 
Generative Adversarial Networks (GANs), developed by Ian Goodfellow and colleagues in 2014, are a type of 
deep learning architecture consisting of two networks: a generator and a discriminator, which are trained 
together in an adversarial process. The generator creates new data samples, while the discriminator evaluates 
them. This approach allows GANs to generate realistic images and has been successfully applied in various 
domains. The architecture of GANs includes two neural networks, each with its performance objective. The 
generator aims to produce data that matches the training dataset, while the discriminator's goal is to 
differentiate between real and generated data. To train GANs, a mini-max game is formulated where the 
generator's strategy is to minimize the probability of the discriminator correctly classifying its outputs, and the 
discriminator's strategy is to maximize this probability. 
 
GANs train the generator and discriminator based on the outputs and errors of their respective networks. The 
training process ends when both networks reach optimal parameters or converge, resulting in the generator 
producing data indistinguishable from the training dataset. This ability to generate images similar to the 
training set positions GANs as a potential development tool for the art and design industries. Training GANs, 
however, can be challenging and may lead to issues like instability, difficulty in convergence, and the presence 
of artifacts in generated images. To address these challenges, several modified GAN architectures have been 
proposed, including WGAN-GP, Pix2Pix, CycleGAN, and StyleGAN. These architectures target specific 
problems and enhance the capabilities of GANs in the fields of image generation, style transfer, and inpainting. 
Overall, GANs represent a promising field of research in material science for discovering new materials with 
desired properties. 
 

Equation 2 :  Consider this neural network 
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5. Applications of Deep Learning in Image Classification 
The integration of deep learning in image classification has manifested significant applications across various 
fields, including medical imaging and autonomous vehicles. Each application presents unique challenges and 
proprietary solutions recognized as its contribution to the overall field. With the advancements in artificial 
intelligence, there has been the capability of machines to perform large domain-specific tasks to a reasonable 
degree of accuracy. This includes understanding visual data and automating its associated decision-making 
tasks by simulating human-like perception. Deep learning is now the predominant approach that drives many 
computer vision applications, thanks to the extensive dataset availability, advanced computing devices 
equipped with parallel architectures such as GPUs, and the introduction of models and techniques that allow 
for the intensive representation learning of data in a hierarchical way. It has been recognized as the most 
reliable and accurate approach for the large-scale domain of analysis of visual data, including faces, people, 
animals, insects, flowers, text, and more. 
 
The application of deep learning in image classification encounters a challenging domain that is wide and 
diverse, such as its constituent categories and the associated non-distinctive visual characteristics. This 
involves the efficient and effective learning of domain-invariant and discriminative representations of data for 
the automation of domain-specific visual data analysis tasks, such as categorization, detection, and 
segmentation in the deep representation learning frameworks. There are many categories with thousands of 
classes with such image datasets, resulting in a computationally intensive learning task. Moreover, there are 
many recent datasets with images captured in real-world conditions with complex backgrounds, poses, 
occlusions, views, scales, and more that exacerbate the given task. This challenge is known as the dataset and 
domain-shift problem. The recent success of deep learning in the visual domain includes a multitude of 
domains where each has unique characteristics, challenges, contributions, and considered strategies or 
techniques. In each case, the applicability of the techniques with consideration of the pipeline of deep learning 
and potential future directions is discussed. Attention is paid to the visualization of the content using figures 
and analysis of the associated challenges, strengths, and concerns to provide a comprehensive understanding 
of the current state of the art and potential future paths concerning deep learning and image classification. 
The main aim is to explore wide and diverse domain-specific visual data analysis tasks that have been the 
subject of deep learning and image classification. The specific tasks of each domain are not exhaustive. 
 
5.1. Medical Imaging 
With the exponential growth of healthcare data in the form of medical images, the ongoing digitization of 
healthcare systems brings forth new challenges and opportunities for leveraging deep learning. Here, it 
explores the state-of-the-art deep learning models, more specifically, convolutional neural networks (CNNs), 
and their extensions for the classification of prominent medical imaging modalities including 2D radiography, 
mammography, 3D CT as well as magnetic resonance (MR) images. Besides the development of novel deep 
learning architectures for medical imaging, several techniques that can be beneficial for the design of neural 
networks are presented as well. Deep learning-based medical image classification and screening systems are 
investigated, which have been shown to tackle critical shortcomings of the traditional approaches, such as the 
demand for large numbers of expert features and long processing times. Given the plethora of potential 
solutions in the literature, an established benchmarking methodology is proposed for the selection of optimum 
networks and configurations concerning the evidence available. These approaches can serve as useful tools for 
researchers and practitioners who may begin to explore deep visual content analysis applications for medical 
images. 
 
Over the past years, deep learning techniques, specifically convolutional neural networks (CNNs), have been at 
the forefront of image classification, segmentation, and reconstruction advancements. Given the success of the 
aforementioned techniques, the thought of applying them to medical images, the most analyzed images in the 
world, arises. With the increasing digitization of healthcare systems, terabytes of medical images are being 
created every day, and given their inherent characteristics such as dimensionality and noise, traditional image 
classification techniques fall short of maximizing their potential for analysis. On the contrary, CNNs, and their 
extensions, have proven to be very powerful classifiers of natural images widely used in numerous real-world 
applications. With the unprecedented amount of available healthcare data, there is an increasing demand for 
its understanding to tackle the very challenging problems that come forth in today's world. A confluence of 
factors has made possible the training of deep learning pipelines. Specifically, the exponential growth of 
training data Internet databases, superior computing power of GPU architectures, and improved architectural 
design of neural networks have emerged as a few enablers of the adoption of deep learning approaches. From 
the rise of these very simplistic, yet powerful tools, their architecture has been heavily investigated to achieve 
state-of-the-art results in image classification. However, the design of the network topology is far from trivial, 
and networks' parameters can take days to be configured. With the advent of open-source codes and free 
learning resources, the field has rapidly grown, gaining much interest in other application domains. 
 
Equation 3 : Iterative and mixed-spaces image gradient inversion attack in federated learning 
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5.2. Autonomous Vehicles 
As technology continues to evolve, the automotive industry is taking steps towards increased automation, and 
a popular topic today is the utilization of deep learning approaches for the analysis of image data in cars. One 
idea behind this is to have a fully autonomous vehicle that can operate without a human driver. A complicated 
deep learning approach called convolutional neural networks (CNN) is proposed here for the classification of 
images captured from a vehicle's dashboard camera into four different classes: roads, traffic lights, vehicles, 
and buildings. With new technology such as LIDAR, radar, and video cameras, vehicles can sense, analyze, and 
understand their driving environments to make safe and efficient driving decisions. Video cameras, mounted 
on vehicles, capture images of the environment as the vehicle moves along the road network. A driver or an 
"agent" has to interpret the captured images to understand the driving situation. For example, whether there 
are pedestrians on the road, or whether it is safe to make a right turn or overtake another vehicle. 
 
It has become crucial to develop intelligent control systems or agents that can take automated safety actions 
based on the understanding of the driving environment. Such intelligent control systems need to classify 
objects in time-critical driving situations, such as "Is the traffic light green or red?" The technology that has 
emerged in recent years for the design of these intelligent control systems is deep learning. Deep learning 
techniques can be utilized for the automatic classification of large datasets containing high-dimensional input 
data that require complex features to be modeled, such as images of driving environments. The approach taken 
in this study involves mapping the understanding of the driving environment to classification tasks and 
utilizing CNN for the classification of the environment's images. CNNs are a type of feed-forward neural 
network composed of multiple layers that is especially well-suited for the modeling of high-dimensional image 
data. Although the investigations are not conducted directly using video images, the modeling of image data is, 
nevertheless, still of high interest in autonomous cars, as they are being equipped with increasingly cheaper 
video cameras. CNNs have previously been successfully utilized for object classification in other applications 
such as face detection and recognition. In this study, the focus is on the classification of image data for a fully 
autonomous vehicle and not on the modeling of other driving actions. Image classification means that a 
vehicle's dashboard camera, which captures images of its driving environment is assumed to exist, and object 
classifications regarding the content of the captured images need to be created. 
 
 
6. Challenges and Future Directions 
As content and capability requirements continue to rise, researchers and practitioners will encounter several 
interesting opportunities to help overcome challenges in the state of the art. However, even as capabilities 
continue to grow, new barriers will arise in the assessment of visual data analysis. Deep learning algorithms for 
image classification have been increasingly successful in recent years, rivaling or exceeding the performance of 
traditional image classification technology in several areas. Commonly used deep architectures include variants 
of convolutional neural networks (CNNs), re-convolution networks (RCNs), and residual neural networks 
(ResNets). However, challenges remain. Several deep architectures use up so many resources that practical 
deployment on small systems is next to impossible. A notable example is ImageNet, which requires a GPU 
cluster with 1000 powerful GPUs and extensive energy, in addition to normal data pre-processing needs for 
parallel analysis with an array of systems. Another approach is to use blind localization or multi-scale pooling 
layers to extract features for classification or in classifiers trained on pooled statistics from localized regions. 
Though it overcomes issues regarding object localization and occlusion, it nevertheless allows features to be 
generated that do not make full use of knowledge about class membership. The increase in off-the-shelf feature 
extractors and spatial models has made visual data analysis dependent on specific types of visual content, thus 
limiting the impact on deeper architectures. 
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Deep algorithms for image and video have grown in number and complexity, alongside enhanced potential, 
thus enabling the integration of these capabilities into diving platforms. This transplantation enables more 
efficient use of capabilities while also expanding the range of possible operations. Current technologies allow 
near-continuous data streaming during inspection operations, thus producing a large and rapid influx of 
possible acquisitions. Systems developed for the image analysis of generic visual content are currently too 
complex and demanding in terms of the requirements of visual data preprocessing for the diversity of domains 
anticipated for maritime and underwater visual acquisition and analysis. In this regard, whilst challenges in 
marine data acquisition are being overcome, new challenges in visual data analysis using deep architectures 
will be faced. 
 
Two important challenges will be the dominant driving force for research in visual data analysis moving 
forward. The most important line of inquiry will be visual data privacy and ethics, especially marine 
surveillance. The complexity of deep architectures will compound concerns about compliance with the 
requirements of public ethical practice and prudence, thus prompting calls for transparency and 
interpretability in conjunction with complex geospatial data. 
 

Fig 4 : Challenges and future in deep learning for sentiment analysis 
 

 
 
6.1. Data Privacy and Ethics 
The rapid adoption of deep learning methods has renewed debates and concerns regarding data collection, 
storage, and usage, especially personal and sensitive data. This concern is general across various domains and 
is not specific to computer vision or deep learning. Various governments have tightened regulations regarding 
data usage for commercial purposes. Examples like the European General Data Protection Regulation (GDPR) 
and the California Consumer Privacy Act (CCPA) state how, when, to whom, and where data can be used. Most 
deep-learning classification models learn directly from raw data, depending significantly on the data of other 
parties. These models are sensitive to data leakage and can unintentionally infer the type of data used during 
training. For instance, a facial recognition model trained on a dataset composed of Christians and Atheists 
could potentially identify an individual’s religious beliefs. Such risks raise pressing questions about the ethics 
of data usage and commodification. 
 
Data privacy indicates the piece of information related to a single individual that a third party doesn’t possess. 
It includes scribe, biometrics, employment details, address, personal interests and hobbies, past and current 
medications, and more. All this data helps to build an individual profile about an individual. When this data is 
shared by people, in online space and otherwise, concerns arise regarding its misuse. Some of the many risks 
of data misuse include danger in the job market, blackmailing, stalker attacks, emulation of fraud crimes, being 
targeted by crime organizations, and identity theft. All these issues force people to think about their data more 
than before and, in many cases, take preventive actions. 
 
Facebook is currently on trial for creating a political advertisement based on the misuse of personal data. Other 
data misuse stories include Cambridge Analytica, Target misusing the personal data of their clients to derive 
their spending habits, and Marriott’s compromise of hundreds of millions of pieces of personal data from their 
customers. Sensitive data arises when a data party might infer additional sensitive details about a data subject 
beyond the content of a data record. For example, an individual’s credit card purchase history is not outlined 
by gender, but a third party could infer this detail. In recent years, there has been a rise in black-box machine 
learning classification models; even though they yield high-class discrimination accuracy, it is impossible to 
know how these models function. Systems might be biased against one group either because the training data 
is polluted or due to how models learned the data. The black-box nature of a classification model also impacts 
its robustness: an undetectable perturbation can change a model’s decision for adversarial examples. 
 
6.2. Interpretability and Explainability 
Deep learning methods have achieved remarkable performance, chiefly due to their superior capabilities in 
modeling complex relationships present in high-dimensional visual data. However, gaining a deeper 
understanding of what is achieved in these models' hidden layers remains one of the grand challenges within 
the deep learning domain. The vision to create artificial intelligence systems that can perform visual tasks 



342                                                             Manikanth Sarisa, et al,/ Kuey,28(4) 7863 
 

similarly to a human requires a comprehensive comprehension of the deep learning architecture on top of 
which these systems are built. Basic neural network models such as convolutional neural networks (CNNs) are 
often conceived as a "black box" with various levels of complexity that obfuscate an intuitive understanding of 
how internal representations are created or which features for classification decisions are prioritized. Rising 
questions about the interpretability and explainability of deep learning methods' decisions to untrained 
audiences are regarded as vital to developing visual analysis systems that are trustworthy and can be seamlessly 
integrated into the decision-making processes. 
 
Interpretability adds to classical machine learning models the human understanding of the model internals 
and the significance of its decisions. Various interpretability levels can be defined for still largely unexplored 
hidden layers, individual filters, or neuron activations, leading to comprehending which features are extracted, 
suppressed, or given priority. Conceptually simpler to provide, the interpretability of last-hidden layers is 
limited, as the overlapping features of various visual concepts become dominant. A higher degree of 
accountability is reached with the decision-making layer, where each decision is outlined with contributions of 
individual features given to the model input. Such an output is often presented with a focused visual inpainting 
that illuminates features for the target class while diminishing those for alternative outputs. The explanation 
model not only specifies what is the focus of the decision but, through the model architecture, reveals how 
perceptions are propagated to produce the output. 
 
Human-level understanding means two-way communication between models and users. Standardized 
measures need to be developed to focus on further conceptual issues to be addressed to realize the 
interpretability potential. With a growing range of models capable of highlighting additional layers, the number 
of potential interpretations is also increasing, leading to difficulties in intuitively comprehending the results 
and drawing reasonable conclusions. Competing methods should be rigorously evaluated regarding accuracy, 
sensibility, and stability vis-a-vis variations in model parameters and datasets. Model interpretation should 
accompany a broader interpretation of model uncertainty, as the counting of weights and correctness of 
decision-making are insufficient in determining the appropriate output. 
 

7. Conclusion 
 
Although early approaches to image classification systems utilized various techniques, including pattern 
recognition and machine learning, most systems relied on the use of a particular set of low-level features. These 
features, combined with classifiers such as SVMs or Random Forests, defined the system. As the quality of the 
selected features is often closely linked to the success and robustness of a system, the attempts to search for 
other kinds of low-level features in the literature and to use them in combination with other classifiers all follow 
the same trend. Fortunately, deep neural networks remove the necessity for designing the feature set. 
"Trainable" feature extractors are built into the architecture of a deep neural network and fully optimize the 
feature set, thus making it robust to the task of interest. A strategy that needs to be followed to obtain optimum 
networks is to search for techniques and configurations that allow the construction of deeper and more complex 
networks. However, such is the scenario of image classification tasks, being the identification of the main 
approaches in neural networks such as Convolutional Neural Networks (CNNs) or Hierarchical Residual 
Networks (ResNets).  
 
These networks extract hierarchical representations of the input image, almost automatically extracting the 
features of interest. Chains of convolutional layers filtering different feature maps are followed by pooling 
layers, which down-sample the output of the convolutional layers and start the cascade of deeper layers. As the 
networks are deep, they allow the extraction of abstract features, moving from edges and pixels in the input 
image to textures and shapes, or objects, in the deepest layers. Then, networks end in Fully Connected Layers 
mapped to the class labels, which obtain the activity of the previously hidden layers and, with the use of 
classifier functions, output the network decision. Although very different in build, Hansen & Dorsey's wavelet 
multilayer perceptrons and CNNs share the same idea of a feature extraction stage based on the utilization of 
a convolution operator. Such an operator minimizes the number of weights of the position-invariant 
architecture of the neural network, resulting in networks with considerably reduced complexity and, thus, 
much faster to train. CNNs give the possibility to choose the architecture complexity of the network, 
determining the number of filters and pooling layers, allowing the customization of the image's representation 
to be extracted. This makes CNNs suitable for visual data analysis and various other types of signals such as 
audio, wireless communications, or biomedical signals. 
 
7.1. Implications for Visual Data Analysis 
Deep learning techniques, particularly convolutional neural networks (CNNs), have significantly advanced 
image classification, leading to a better understanding of visual data and influencing various research fields 
and application areas. The continuous emergence of digital images from multiple sources, such as 
smartphones, drones, and security cameras, has driven the need for effective tools to analyze, understand, and 
classify image data. These requirements have paved the way for several key implications and discussions in the 
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area of visual data analysis. As a result of this progress, several implications in the area of visual data analysis 
have significantly contributed to a better understanding of visual data and their uses in different research fields 
and application areas. The continuous emergence of millions of images daily from multiple sources, such as 
mobile phones, satellite imagery, surveillance cameras, and drones, has intensified the requirements for 
effective tools to analyze and understand the information behind these visual data. Digital images from multiple 
sources have emerged at a rapid pace, producing a huge quantity of visual data containing rich information. It 
is imperative to analyze this visual data either automatically or effectively if it cannot be comprehended and 
understood due to its large quantity. This provides numerous opportunities for researchers who come up with 
different methods and techniques to classify and facilitate a better understanding of visual data. 
 
 Though images and videos were initially analyzed by the use of classical features, handcrafted features are 
being coupled with advanced machine learning techniques instead of directly feeding raw pixels to classifiers. 
Machine learning methods have to be trained on large and task-specific datasets, and the requirement of large 
datasets may limit their potential areas of application and effectiveness. As opposed to machine learning 
methods, deep learning techniques have been hugely successful by automating the feature extraction process 
on imaging tasks. Deep learning approaches, mainly CNNs, are the current state-of-the-art for image 
classification. With the availability of datasets containing millions of images and substantial development of 
hardware and processing capability, CNNs are now being used as a better alternative to classifying images. As 
the use of digital images has intensified in different applications, better comprehension of visual data and their 
analysis has attracted the attention of different research fields, requiring the development of sophisticated tools 
to analyze these visual data from different sources. 
 

Fig 5 : Data Visualization 

 
                        
 
7.2. Future Trends  
A plethora of upcoming trends and advancements in computer vision are expected to shape the landscape of 
visual data analysis in the ensuing years. This burgeoning domain, flourishing significantly in recent years with 
the advent of deep learning, has dealt with systems capable of interpreting and analyzing images in a manner 
akin to human cognition. Consequently, computers can recognize and process the internal structures of 
recognized objects or situations. The major future trends likely to grip the field in the next few years include 
improvements to existing architectures and the rise of novel ones. Regarding improvements, ResNet remains 
a good network to expand in both depth and width. Additionally, the notion of pyramids could be explored 
further, exemplified by efforts at Google. Moreover, augmentation is seen as one of the main bottlenecks to low 
prior requirements for wide dissemination of GPGPU systems. Consequently, it is necessary to investigate 
generational models that could automatically enhance images and obtain richer data with minimum human 
effort. In terms of new architectures, four major thrusts of very recent importance could be potentially further 
developed. First, the less common use of modulation applied to inter-layer communication could yield 
ensemble classifiers that encompass a variety of perspectives instead of relying entirely on a unique one. 
Secondly, networks that are automatically constructed via combinatorial methods, akin to original human 
effort (such as projects at Google), may emerge to vastly accelerate the process.  
 
Thirdly, the shift from isolated parts to whole objects across the whole pipeline could serve as a potentially 
interesting radical change in perspective, possibly enhancing accuracy. Finally, the more innovative idea of 
recursive deep learning based on Lisp notions (as per an NYU project) may lead to substantial networks, aiding 
in understanding the process of cognition itself. All these points could lead to significant advancements in the 
field of computer vision. Further steps in research accomplished in the last few years will also be pursued to 
enhance the theory and application domains. Continuous improvements of already provided results are 
anticipated. Notably, a recently posted code on request for the image search engine developed is in the process 
of validation, after which it will be made public and its usability reported. Thereafter, it will be considered 
developing its still-absent complement for video processing, anticipated to be an important niche given the 
rapid growth of such data on general-use computers. On the other hand, considering different applications of 
reflection, context recognition is expected, as there are many realistic situations affecting accuracy in precisely 
this way, presently unexplored. Similarly, an onboard vehicle situation image pre-classification method is 
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awaited for a slightly different perspective. In the more industry-oriented domain, new concepts for 
autonomous market kiosk design with reasonably advanced interaction abilities are awaited. 
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