
Copyright © 2022 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2022, 28(4), 409 - 419
ISSN: 2148-2403

https://kuey.net/ Research Article

An Overview of Object-Oriented Programming (Oop) And
Its Impact on Software Design

Sagar Vishnubhai Sheta1*

1*Software Developer, Desire Network & solutions india pvt. Ltd, india

Citation: Sagar Vishnubhai Sheta (2022), An Overview of Object-Oriented Programming (Oop) And Its Impact on Software Design,
Educational Administration: Theory and Practice, 28(4) 409 - 419
Doi: 10.53555/kuey.v28i4.8473

ARTICLE INFO ABSTRACT

 This research aims to identify and compare the fundamental concepts of OOP and
analyze the effects on the software structure especially for its scalability,
modularity, and maintainability. The presented study, considered users' OOP
notions encompassing encapsulation, inheritance, polymorphism, and
abstraction and discusses their role in the development of flexible, reusable, and
extensible software systems. Further, the commonly used design patterns,
including Singleton, Factory, and Observer, are discussed to investigate their
contribution to the improvement of system maintainability for the long term. The
research also seeks to establish how OOP will interact with other programming
paradigms for purposes of understanding what impacts the general software
system performance. This paper has shown, by example, the applicability and
value of OOP principles and patterns towards enhancing software designs, and its
flexibility for change as requirements shift.

Index Terms— Object-Oriented Programming (OOP), Design Patterns,
Scalability, Modularity, Software Maintenance

I. INTRODUCTION

OOP is now widely accepted as a basic model for programming because it makes it possible to build systems
that are well-organized and easily modifiable. The subjects of this research are the principles of OOP, such as
encapsulation, inheritance, polymorphism, and abstraction, and how they affect software design. The study
also looks at how certain aspects of design patterns such as the Singleton, Factory, and Observer patterns lend
themselves to the building of robust and scalable software. Moreover, the research focuses on the combination
of OOP with other paradigms to optimize and improve the performance of the systems, for instance, functional.
In a broad sense, the work shows that thanks to OOP, the sustainability and adaptability of software in the long
term are achieved.

1.1 Aim and Objectives
Aim
This work aims to identify how well Object-Oriented Programming (OOP) principles and design patterns can
be applied in software systems and whether considering the size and distribution of the system and deploying
OOP alongside other programming paradigms for constructing more flexible, reusable, and extensible
software.

Objectives
● To assess the effects of the core principles of OOP, including encapsulation, inheritance, polymorphism, and
abstraction on scalability, modularity, and reusability in large systems.
● To assess the ability of the general OOP design patterns (such as Singleton Pattern, Factory Pattern,
Observer Pattern) to achieve control of the long-term stability and flexibility of software.
● To explore the design patterns that can be incorporated with other paradigms including functional
programming paradigms to determine the impacts of integrated paradigms on the aspect of software efficiency
and flexibility.

https://kuey.net/

410 Sagar Vishnubhai Sheta et al. / Kuey, 28(4), 8473

II. LITERATURE REVIEW

2.1 Core Principles of Object-Oriented Programming and Their Role in Software Development
OOP is a form of programming that organizes software design around objects and their interaction,
encapsulation, inheritances, and polymorphisms making the software modular and reusable. All of these
principles are very important to the structure of code in such a way that enhances development efficiency and
the sustainability of the software (Saide, 2024). This is the grouping of data (attributes) and methods
(functions) in logical groups called objects, which allows only limited data access. This is made possible by the
access modifier that includes private, protected, and public that cordon an object’s properties and methods
(Hu, 2023). By making data private, encapsulation enhances the reliability of the data integrated into the
system and protects it against accidental changes, making modifications or other errors more manageable.
Inheritance is a mechanism that facilitates the generation of new classes known as subclass that acquire
properties from other classes known as superclasses (Cipriano & Alves, 2024). This principle makes reusability
possible especially where some functionalities are extended rather than being newly written. Inheritance is
most beneficial in a large number of systems

Fig 2.1: OOP Principles

(Source: Meilani & Purnama, 2023)

On the large scale of a system, inheritance acts as a base for structured hierarchy while minimizing redundant
code hence making the code more understandable and efficient (Sunday et al., 2023). Polymorphism means
that objects of a subclass can be used as the objects of the parent class, so different kinds of objects can be
worked with by a single function. This concept extends maintainability in code since polymorphic operations
may be redesigned in the subclasses without modifying the invoking code; this allows for adaptation to future
changes and makes the software manipulative to future demands (Vijaya et al., 2024). Another benefit of using
abstraction is reducing the complexity of a system by showing only important aspects while hiding the rest.
Using abstraction OOP enables developers to control the complexity by only focusing on the attributes and
operations of significance (Dooley & Kazakova, 2024). This results in neat structures that have little effect on
the cognitive capacities of the program developers; they can focus more on the outlines and the functions of
the programs (Gresta et al., 2023).

2.2 Comparison of Object-Oriented Programming with Other Programming Paradigms
The main difference between OOP and other paradigms, like procedural and functional programming
paradigms, lies in the orientation of code around certain “objects” that mirror real-life objects (Koti et al.,
2024). This approach differs from procedural where there is an order of steps performed, functional which
concentrates on no mutation, and pure functions that have no external influence. The comparison of these
paradigms identifies the peculiarities of OOP, especially, its applicability to complex systems (Gabbrielli and
Martini, 2023). Based on the analyses, OOP’s main strength has to do with modularity, reusability, and
scalability. Inheritance, encapsulation, and polymorphism are a few of the OOP features that allow structures
of complex systems into separate objects that can communicate independently, thus following specific
interfaces (Dümmel et al., 2023). This encapsulation enables the construction of large-scale systems using

411 8473 / Kuey, 28(4), Sagar Vishnubhai Sheta et al.

application and subroutine components which may be reused or added to without affecting other sections of
the application or subroutine.

Fig 2.2: OOP Vs FP

(Source: Wang et al., 2024)

The structure of OOP, which is a class hierarchy, is particularly helpful when it comes to repurposing or
inheriting properties and behavior which is always helpful when managing huge codes (Vayadande et al.,
2024). Therefore, OOP is used in many large applications including enterprise-level applications and
simulations, which require more M&F. The OOP has significant drawbacks when compared to other paradigms.
Procedural programming can provide better modularity and speed in terms of simple functional input/output,
or linear process input/output setups due to the program flow it follows (Kholmatov and Mubiyna, 2023).
Functional programming is more predesigned for work in parallel and with unalterable data structures, which
makes it a good choice for applications that are to solve parallel computing and data processing. One of the
disadvantages of using mutable objects in OOP stems from the fact that tracking changes in state across several
objects may cause a lot of problems (Flageol et al., 2023). OOP embraces flexible instruments for controlling
complicated and dynamic software systems, its structure limits some sorts of applications. Each, therefore, has
areas in which it flourishes and OOP is especially suitable for systems that have to sustain a segmented
architecture over a long period of durability (Muk Abramovich and Mamirovich, 2023).

2.3 Impact of Object-Oriented Design Patterns on Software Architecture
Object-oriented design (OOD) patterns can be described as pre-solutions to recurring design problems that
assist in defining enhanced solutions for designs that possess scalable, flexible, and maintainable software
structures (Aratchige et al., 2024). Design patterns including the Singleton, Factory, and Observer reflect the
best practices that can be used to enhance the efficiency of the solution process to common problems; solutions
that can be easily implemented by the developers through specific techniques. These patterns are best
associated with Object Oriented Programming (OOP) since they improve software modularity and flexibility as
well as interdisciplinary cooperation (Asaad and Arsentieva, 2024). There is the Singleton pattern that makes
certain that a class can only contain one instance while offering a single point of access to that instance. This
pattern is used for handling a shared resource that for instance could create problems in terms of resource
sharing or over-usage, connections to the database, configuration settings, etc (Eigler et al., 2023). The
Singleton pattern is instrumental in regulating object creation and thus results in constructive resource
utilization besides promoting stability in large systems with many components (Rahman et al., 2023).

412 Sagar Vishnubhai Sheta et al. / Kuey, 28(4), 8473

Fig 2.3: Software Architecture and Design Patterns

(Source: Karanikolas, 2023)

Another of the foundational design solutions, the Factory pattern, controls the production of objects from an
interface, letting subclasses decide their formation. This fosters flexibility since the application can define new
types of creation without changing the overall code of the application (Ngaogate, 2023). It is particularly
desirable in environments in which changes have to be made rather often, the question about dependencies
becomes rather critical, as they hinder the flexibility of software development and subsequent maintenance.
The Observer pattern, typically used in such a program as events, enhances the interaction in terms of
dependency between one object and several others (Piyawardhana et al., 2023). All dependent observers are
informed automatically whenever the state of the subject changes. This pattern is useful in designing kinetic
systems, for instance, the one that responds to users or visualizations where there is the need to have
components respond to state change events. OOD patterns offer a specific format for handling recurrent design
issues and help make code less difficult to keep, augment, and test (Fallucchi and Gozzi, 2024). So when
implemented it would give an architecture that can be adapted to system changes and also be easily scalable to
meet the future needs of various high-end organizations, thus conforming to the best standards of modern-day
long-term solutions for software systems (Babiuch and Foltynek, 2024).

2.4 Literature Gap
Despite the wide use of OOP and its associated design patterns, little comparative evidence is available
regarding their ability for application in different domains as software increases in size and complexity. A vast
amount of research literature covers best practices of particular methods of OOP and design patterns; however,
the few empirical studies that can be found focus on the long-term effects of OO concepts in general, and, again,
not in everyday practice projects. Paradigms including functional and reactive programming are on the rise,
changing practices, while the existing approaches crossbreeding OOP with them in large systems have not been
studied. It might be interesting, for example, to understand how OOP patterns work in practice in today’s
distributed systems or in systems where multiple patterns are used at once. This gap points to a research niche
aimed at assessing OOP patterns in different and more dynamic programming environments.

III. METHODOLOGY

3.1 Research Design and Approach
According to the proposed plan, this research will use both quantitative and qualitative research with a
combination of empirical and case studies analysis (Barroga et al., 2023). The empirical aspect of the research
regards the collection and evaluation of data regarding software projects that utilize OOP and employ design
patterns, with a focus on the projects’ durability, maintainability, and capacity for further expansion (Dehalwar
& Sharma, 2024). The case study part concerns the studies of concrete software projects in which OOP is
complemented with other programming paradigms like functional ones to understand the influence of such
hybrid approaches on the structure of software (Inglis et al., 2023). This way it is possible to enumerate
weaknesses or successes of OOP principles and design patterns in general and look at particular cases

413 8473 / Kuey, 28(4), Sagar Vishnubhai Sheta et al.

simultaneously when specific problems occurred, and when general trends can be observed (Love et al., 2023).
A comparative analysis is also used in the study whereby results emerging from OOP-based systems are
compared to other programming paradigms to establish the strengths and weaknesses of OOP. First, the
research focuses on such projects where the share of OOP approaches increased from the previous absence to
a combination of OOP and traditional methods, to discuss the rationale for such a shift and its effectiveness
(Adorjan, 2023).

3.2 Data Collection
Data collection involves two main sources: The paper is informed by a literature agency of various empirical
studies and case study literature drawn from actual software projects (Hay-Schmidt et al., 2021).

Fig 3.1: Mixed Methods

(Source: Richardson et al., 2023)

3.2.1 Literature Review
The literature review is devoted to the prior research concerning the efficiency of OOP principles and the
application of essential design patterns, including Singleton, Factory, and Observer patterns (Ailes et al., 2024).
This review provides a reference point to clearly distinguish the existing advantages and disadvantages of OOP.
This source contains research papers and articles from the academic world, technical papers, and industry
research papers on OOP and its effects on modularity, reusability, and scalability (Moser et al., 2024). The
literature review also includes studies in other programming paradigms, including functional and procedural
paradigms, for comparative analysis.

3.2.2 Case Studies
In the case study part, quantitative data is collected from companies and software development projects that
use OOP and design patterns (Karthikeyan et al., 2024). Case studies are chosen based on specific criteria, it
continues that projects used in the study have to be launched for more than three years, possess high
modularity and scalability, and employ at least one large OOP design pattern (Karunarathna et al., 2024). In
each case, project documentation, architectural specifications, and any documents that might have been
produced after the software implementation, such as software maintenance and performance records, are
examined (Köhler et al., 2020).
Qualitative data about the nature and the reasons for discussions and decisions regarding OOP patterns and
their assumed advantages and disadvantages of developers and project managers involved in the given projects
are interviewed (Yang et al., 2024). These interviews also answer questions on additions of other programming
paradigms to the OOP-based architectures that the developers may have implemented.

3.3 Data Analysis
Data analysis is separated into three parts to respond to each purpose of the research appropriately.

3.3.1 Analysis of OOP Principles in Software Modularity and Scalability
Literature data obtained in literature review and case studies is used to define how core OOP principles
including encapsulation, inheritance, polymorphism, and abstraction influence the modularity, reusability,
and scalability of software (Vera & Vera, 2024). The data consists of such quantitative measurements as code
density, the amount of modules, and code reuse (Saide, 2024). Comparative analysis is made by comparing
these metrics to similar ones in non-OOP-based projects to judge to what extent OOP principles improve
modularity and scalability.

3.3.2 Testing Object-Oriented Patterns on software performance and flexibility
During this phase, the identification of the case study data and the interview responses shall be used to
determine the use of design patterns that enhance the long-term performance and adaptability of the software
applications. The projects under consideration, the rates of refactoring, overall maintenance work measured in
person-hours, and the elasticity of the system in question with relation to feature changes are compared
(Flageol et al., 2023). In assessing each of the design patterns investigated in this paper, their capacity to fulfill

414 Sagar Vishnubhai Sheta et al. / Kuey, 28(4), 8473

the objectives of providing versatile software with ease of maintenance is determined. Certain patterns, such
as Singleton, Factory, etc are compared with better code stability or flexibility using some statistical approaches
(Abidin and Zawawi, 2020).
3.3.3 Investigation of Hybrid Programming Approaches
Projects that have emerged with the OOP methodology integrating with another methodology such as
functional programming methodology are studied intensively. Based on the conducted interviews and project
documents, reasons for the choice of hybrid methods and the estimated influences on software quality,
maintainability, and developer productivity are examined (Kechagias & Zaoutsos, 2023). This is followed by
the comparisons of various structural complexities of the code in terms of OOP-only projects as well as hybrid
software projects including the extent of modularity of the code, the extent of dependencies, and the error rates.
Using interviews, the qualitative data is analyzed and codes embodying recurring patterns of challenges and
perceived advantages of hybrid approaches are derived.

IV. RESULT AND DISCUSSION

4.1 Result

Fig. 4.1: OOP principles

This figure provides an understanding of some of the OOP concepts including Encapsulation, Inheritance,
Polymorphism, and Abstraction. This is a process of grouping the data and the operations that are performed
on data into a single entity known as a class. One class can inherit from another, which leads to great reuse of
code (Cipriano and Alves, 2023). Polymorphism allows objects to be manipulated or referenced as objects of
the class's super type; it lets different subclasses give specific implementations. Abstraction makes the system
less complicated to understand from internal attributes but presents to the user only tools and data that are
necessary to manipulate to achieve specific goals which results in efficient software modularity.

415 8473 / Kuey, 28(4), Sagar Vishnubhai Sheta et al.

Fig. 4.2: Distribution of car types

This bar chart depicts how many Electric and Gas cars were present in the sample dataset. The bar ensures that
the frequency of each car type is easily recognizable making it easier to compare EVs with gas-powered cars.
The clear division of the two categories offers an opportunity to capture current dynamics in car ownership or
manufacturing preferences, with the rising popularity of electric cars getting to the foreground (Mukaramovich
and Mamirovich, 2023). Thus, this chart can be viewed as a useful instrument for regulating the ratio between
these two types of cars, which will be important while considering the issue of sustainability and energy
efficiency of transport systems.

416 Sagar Vishnubhai Sheta et al. / Kuey, 28(4), 8473

Fig. 4.3: Battery Size vs Fuel Efficiency

The line chart below depicts an analysis of the battery size and fuel efficiency of electric cars. The points depict
how differing battery capacities kWh)co-relate with the fuel efficiency of the EV though the chart only presents
the electric cars. Such a pattern that is illustrated in the chart may help explain how these enhancements in
battery technology affect electric vehicles’ performance (Khalid et al., 2022). Usually, battery storage capacities
are directly proportional to energy storage and, by extension, to higher ranges or efficiency – an aspect that
should be critical in determining how effective electric vehicles could be as substitutes for fuel-powered
automobiles.

Fig. 4.3: Car Type Proportions

417 8473 / Kuey, 28(4), Sagar Vishnubhai Sheta et al.

The pie-chart in this figure indicates the distribution of various car types in the dataset including electric and
gas cars. The percent distribution of each type of car is also included in the chart which gives a natural way of
determining their proportion. This division is crucial for evaluating market condition splits between electric
and traditional automobiles (Jusas et al., 2022). It is particularly useful when it comes to analyzing industry
issues, consumer behavior, and the effects of vehicles on the environment. This pie chart takes a very basic
approach to the presentation of data as it just breaks down the types of cars found in the dataset at the current
time.

4.2 Discussion

The outcomes depicted in the figures contribute a great deal of understanding regarding the applicability of the
OOP principles and patterns concerning the issues of scalability and flexibility relating to software engineering
(Saidova, 2022). The distribution of car types is depicted in Fig. 4.2; it is evident that currently, there is a surge
of electric cars as compared to gas-operated cars in line with the global call for energy conservation. The data
also supports the role of OOP in the administration of such systems since the data presented shows the
modularity and reusability of software systems (Sari et al., 2021). Figure 4.3 shows the link between battery
size and fuel efficiency and indicates that higher performance can be expected with the development of new
types of batteries. The given research indicates that object-oriented programming can appropriately apply the
principles of encapsulation and abstraction when modeling complicated systems of the motor industry. In
conclusion, the numbers also support the assertion that integrating design patterns in OOP provides stronger
system stability and improves usage and maintainability sustainability throughout various application systems
(Eshankulov, 2020).

V. CONCLUSION

This work is an opportunity to discuss the benefits and drawbacks of applying OOP paradigms and design
patterns in the context of modularity, reusability, and scalability of software systems, including encapsulation,
inheritance, and polymorphism paradigms. As the series of studies in the last section indicates, OOP is
advantageous to create large software systems as it encourages modularity and flexibility for their creation and
the making of easily maintainable programs. Those such as Singleton, Factory, and Observer are crucial for the
usage of resources, object creation, and dependency as well as for making complex systems more portable. But
then again, the research also points out some of the dragon’s teeth of OOP especially when it comes to dealing
with mutable data and state transitions in large systems. The analysis of case studies shows that hybrid
development approaches can be used as additional options to OOP and consist of the integration of functional
programming into the development process. Both together help future research and applications for more
intense and stable info processing in application development implying that OOP is still valid with other
paradigms in modern software structure.

VI. Acknowledgment

I am pleased to present my dissertation titled "An Overview of Object-Oriented Programming (OOP)
and Its Impact on Software Design". I wish to extend my heartfelt gratitude to those who have supported
me in completing this research.
I am deeply thankful to those who assisted in gathering the necessary data throughout this study. My sincere
appreciation goes to my professors for their invaluable guidance and insights.
I also want to express my gratitude to my friends whose support and encouragement played a crucial role in
achieving our shared objectives.
I acknowledge the unwavering support of my batch mates, supervisors, and professors throughout this
endeavor. Any shortcomings in this research are entirely my responsibility.

REFERENCES

[1] Saide, M., 2024. Understanding Object-Oriented Development: Concepts, Benefits, and Inheritance in

Modern Software Engineering. Benefits, and Inheritance in Modern Software Engineering (July 01, 2024).
 Nazokat Xon, O., 2023. FUNDAMENTALS OF OBJECT-ORIENTED PROGRAMMING. Ta'limning

zamonaviy transformatsiyasi, 1(1), pp.708-716.
[2] Cipriano, B.P. and Alves, P., 2023, June. Gpt-3 vs object-oriented programming assignments: An

experience report. In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1 (pp. 61-67).

[3] Hu, C., 2023. Essentials of Object-Oriented Design. In An Introduction to Software Design: Concepts,
Principles, Methodologies, and Techniques (pp. 37-73). Cham: Springer International Publishing.

[4] Meilani, Y.I. and Purnama, J., 2023. Object Oriented Programming of Application Admission of New High
School Students. Sinkron: jurnal dan penelitian teknik informatika, 7(1), pp.461-469.

418 Sagar Vishnubhai Sheta et al. / Kuey, 28(4), 8473

[5] Sunday, K., Oyelere, S.S., Agbo, F.J., Aliyu, M.B., Balogun, O.S. and Bouali, N., 2023. Usability evaluation
of Imikode virtual reality game to facilitate learning of object-oriented programming. Technology,
Knowledge and Learning, 28(4), pp.1871-1902.

[6] Vijaya, J., Kulkarni, A., Ranjan, V.V. and Bajaj, V., 2024, March. An Enhanced Object-Oriented
Programming-Based Web Page Linker. In 2024 IEEE International Conference on Interdisciplinary
Approaches in Technology and Management for Social Innovation (IATMSI) (Vol. 2, pp. 1-6). IEEE.

[7] Dooley, J.F. and Kazakova, V.A., 2024. Object-oriented design principles. In Software Development,
Design, and Coding: With Patterns, Debugging, Unit Testing, and Refactoring (pp. 245-274). Berkeley,
CA: Apress.

[8] Gresta, R., Durelli, V. and Cirilo, E., 2023. Naming practices in object-oriented programming: An empirical
study. Journal of Software Engineering Research and Development, 11(1), pp.5-1.

[9] Koti, A., Koti, S.L., Khare, A. and Khare, P., 2024. 1335 Beyond the Paradigm: Unraveling the Limitations
of Object-Oriented Programming. Multifaceted approaches for Data Acquisition, Processing &
Communication, p.95.

[10] Gabbrielli, M. and Martini, S., 2023. Object-Oriented Paradigm. In Programming Languages: Principles
and Paradigms (pp. 279-334). Cham: Springer International Publishing.

[11] Dümmel, N., Westfechtel, B. and Ehmann, M., 2023, June. A Multi-Paradigm Programming Language for
Education. In Proceedings of the 5th European Conference on Software Engineering Education (pp. 236-
245).

[12] Wang, S., Ding, L., Shen, L., Luo, Y., Du, B. and Tao, D., 2024. OOP: Object-Oriented Programming
Evaluation Benchmark for Large Language Models. arXiv preprint arXiv:2401.06628.

[13] Vayadande, K., Telsang, S., Thakare, M., Thigale, O., Thenge, A. and Tarade, S., 2024. Performance
Optimization Techniques in Object Oriented Programming in PHP. Grenze International Journal of
Engineering & Technology (GIJET), 10.

[14] Kholmatov, A. and Mubiyna, A., 2023. C AND C++ PROGRAMMING LANGUAGES CAPABILITIES AND
DIFFERENCES. Galaxy International Interdisciplinary Research Journal, 11(11), pp.35-40.

[15] Flageol, W., Menaud, É., Guéhéneuc, Y.G., Badri, M. and Monnier, S., 2023. A mapping study of language
features improving object-oriented design patterns. Information and Software Technology, 160, p.107222.

[16] Mukaramovich, A.S. and Mamirovich, I.S., 2023. USING VISUAL LEARNING ENVIRONMENTS IN
TEACHING OBJECT-ORIENTED PROGRAMMING. Al-Farg’oniy avlodlari, 1(3), pp.51-55.

[17] Aratchige, R., Manujaya, K. and Weerasinghe, P., 2024. An Overview of Structural Design Patterns in
Object-Oriented Software Engineering. Sofware Modeling, pp.1-3.

[18] Asaad, J. and Avksentieva, E., 2024, April. A Review of Approaches to Detecting Software Design Patterns.
In 2024 35th Conference of Open Innovations Association (FRUCT) (pp. 142-148). IEEE.

[19] Eigler, T., Huber, F. and Hagel, G., 2023, June. Tool-Based Software Engineering Education for Software
Design Patterns and Software Architecture Patterns Systematic Literature Review. In Proceedings of the
5th European Conference on Software Engineering Education (pp. 153-161).

[20] Rahman, M., Chy, M.S.H. and Saha, S., 2023, August. A systematic review of software design patterns in
today's perspective. In 2023 IEEE 11th International Conference on Serious Games and Applications for
Health (SeGAH) (pp. 1-8). IEEE.

[21] Karanikolas, C., 2023. Model-driven software architectural design based on software evolution modeling
and simulation and design pattern analysis for design space exploration towards maintainability (Doctoral
dissertation, Πανεπιστήμιο Πελοποννήσου. Σχολή Οικονομίας και Τεχνολογίας. Τμήμα Πληροφορικής
και Τηλεπικοινωνιών).

[22] Ngaogate, W., 2023, September. Handling Various Conditions in a Web Service Client's Method by Using
the Visitor Design Pattern. In 2023 27th International Computer Science and Engineering Conference
(ICSEC) (pp. 341-347). IEEE.

[23] Piyawardhana, V., Madhuwantha, T., Chandika, L. and Bavantha, M., 2023. An empirical study of the
impact of software design patterns on code quality. Authorea Preprints.

[24] Fallucchi, F. and Gozzi, M., 2024. Puzzle Pattern, a Systematic Approach to Multiple Behavioral
Inheritance Implementation in Object-Oriented Programming. Applied Sciences, 14(12), p.5083.

[25] Babiuch, M. and Foltynek, P., 2024. Implementation of a Universal Framework Using Design Patterns for
Application Development on Microcontrollers. Sensors, 24(10), p.3116.

[26] Barroga, E., Matanguihan, G.J., Furuta, A., Arima, M., Tsuchiya, S., Kawahara, C., Takamiya, Y. and Izumi,
M., 2023. Conducting and writing quantitative and qualitative research. Journal of Korean Medical
Science, 38(37).

[27] Dehalwar, K. and Sharma, S.N., 2024. Exploring the Distinctions between Quantitative and Qualitative
Research Methods. Think India Journal, 27(1), pp.7-15.

[28] Inglis, G., Jenkins, P., McHardy, F., Sosu, E. and Wilson, C., 2023. Poverty stigma, mental health, and
well‐being: A rapid review and synthesis of quantitative and qualitative research. Journal of Community
& Applied Social Psychology, 33(4), pp.783-806.

[29] Love, H.R., Fettig, A. and Steed, E.A., 2023. Putting the “mix” in mixed methods: How to integrate
quantitative and qualitative research in early childhood special education research. Topics in Early
Childhood Special Education, 43(3), pp.174-186.

419 8473 / Kuey, 28(4), Sagar Vishnubhai Sheta et al.

[30] Adorjan, A., 2023, August. Towards a Researcher-in-the-loop Driven Curation Approach for Quantitative
and Qualitative Research Methods. In European Conference on Advances in Databases and Information
Systems (pp. 647-655). Cham: Springer Nature Switzerland.

[31] Richardson, J.L., Moore, A., Bromley, R.L., Stellfeld, M., Geissbühler, Y., Bluett-Duncan, M., Winterfeld,
U., Favre, G., Alexe, A., Oliver, A.M. and van Rijt-Weetink, Y.R., 2023. Core data elements for pregnancy
pharmacovigilance studies using primary source data collection methods: Recommendations from the
IMI ConcePTION project. Drug Safety, 46(5), pp.479-491.

[32] Ailes, E.C., Werler, M.M., Howley, M.M., Jenkins, M.M. and Reefhuis, J., 2024. Real World Data are Not
Always Big Data: The Case for Primary Data Collection on Medication Use in Pregnancy in the Context of
Birth Defects Research. American Journal of Epidemiology, p.kwae060.

[33] Moser, K., Massag, J., Frese, T., Mikolajczyk, R., Christoph, J., Pushpa, J., Straube, J. and Unverzagt, S.,
2024. German primary care data collection projects: a scoping review. BMJ open, 14(2), p.e074566.

[34] Karthikeyan, R., Al-Shamaa, N., Kelly, E.J., Henn, P., Shiely, F., Divala, T., Fadahunsi, K.P. and
O'Donoghue, J., 2024. Investigating the characteristics of health-related data collection tools used in
randomized controlled trials in low-income and middle-income countries: protocol for a systematic
review. BMJ open, 14(1), p.e077148.

[35] Karunarathna, I., Gunasena, P., Hapuarachchi, T. and Gunathilake, S., 2024. The crucial role of data
collection in research: Techniques, challenges, and best practices. Uva Clinical Research, pp.1-24.

[36] Yang, Z., Li, Y., Sun, J., Hu, X., and Zhang, Y., 2024. Consumer private data collection strategies for AI-
enabled products. Electronic Commerce Research and Applications, p.101460.

[37] Vera, J.B.V. and Vera, J.R.V., 2024. The Role of object-oriented Programming in sustainable and Scalable
Software Development. Revista Minerva: Multidisciplinaria de Investigación Científica, 5(13), pp.59-68.

[38] Saide, M., 2024. Understanding Object-Oriented Development: Concepts, Benefits, and Inheritance in
Modern Software Engineering. Benefits, and Inheritance in Modern Software Engineering (July 01, 2024).

[39] Flageol, W., Menaud, É., Guéhéneuc, Y.G., Badri, M. and Monnier, S., 2023. A mapping study of language
features improving object-oriented design patterns. Information and Software Technology, 160, p.107222.

[40] Kechagias, J.D. and Zaoutsos, S.P., 2023. An investigation of the effects of ironing parameters on the
surface and compression properties of material extrusion components utilizing a hybrid-modeling
experimental approach. Progress in Additive Manufacturing, pp.1-13.

[41] Cipriano, B.P. and Alves, P., 2023, June. Gpt-3 vs object oriented programming assignments: An
experience report. In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1 (pp. 61-67).

[42] Mukaramovich, A.S. and Mamirovich, I.S., 2023. USING VISUAL LEARNING ENVIRONMENTS IN
TEACHING OBJECT-ORIENTED PROGRAMMING. Al-Farg’oniy avlodlari, 1(3), pp.51-55.

[43] Khalid, M.S., Yevsieiev, V., Nevliudov, I.S., Lyashenko, V. and Wahid, R., 2022. HMI development
automation with GUI elements for object-Oriented programming Languages implementation.

[44] Jusas, V., Barisas, D. and Jančiukas, M., 2022. Game elements towards more sustainable learning in
object-oriented programming course. Sustainability, 14(4), p.2325.

[45] Saidova, D.E., 2022. Analysis of the problems of the teaching object-oriented programming to students.
International Journal of Social Science Research and Review, 5(6), pp.229-234.

[46] Sari, A.W., Wahyuni, R. and Siregar, A., 2021. The Effect Of Object-Oriented Programming (Adobe-Flash)
Based Multimedia Learning Methods On English For Tourism Courses. EduTech: Jurnal Ilmu Pendidikan
dan Ilmu Sosial, 7(2).

[47] Eshankulov, K.I., 2020. Implementation of the decision-making module through object-oriented
programming of the frame knowledge base. In ТЕХНИЧЕСКИЕ НАУКИ: ПРОБЛЕМЫ И РЕШЕНИЯ
(pp. 41-45).

[48] Abidin, Z.Z. and Zawawi, M.A.A., 2020. Oop-ar: Learn object oriented programming using augmented
reality. International Journal of Multimedia and Recent Innovation (IJMARI), 2(1), pp.60-75.

[49] Köhler, M., Eskandani, N., Weisenburger, P., Margara, A. and Salvaneschi, G., 2020. Rethinking safe
consistency in distributed object-oriented programming. Proceedings of the ACM on Programming
Languages, 4(OOPSLA), pp.1-30.

[50] Hay-Schmidt, L., Glück, R., Cservenka, M.H. and Haulund, T., 2021, June. Towards a unified language
architecture for reversible object-oriented programming. In International Conference on Reversible
Computation (pp. 96-106). Cham: Springer International Publishing.

