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ARTICLE INFO ABSTRACT
In this paper, we prove common fixed-point theorems in extended complete b-
metric spaces using rational type contraction for two self-mappings. Our results
extend and improve the results proved by Mlaiki et al. [1] for a single self-mapping
in extended complete b-metric space. We extend their results for two self-mappings
without assuming the continuity of any mapping.
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1. Introduction.

Banach [2] in demonstrated a highly consequential theorem in the context of complete metric spaces, establishing
the existence of a unique fixed point. Since then, the fixed-point theory is one of the most important tools in many
branches of science, economics, computer science, engineering and the development of nonlinear analysis.

Bourbaki [3] and Bakhtin [4] initiated the idea of b-metric spaces. Czerwik [5] gave an axiom which was weaker
than the triangular inequality and formally defined a b-metric space with a view of generalizing the Banach [2]
contraction mapping theorem. He introduced a function that adjusts the triangle inequality by replacing the
constant based on specific point interactions. Kir and Kiziltune [6], Boriceanu [7], Bota [8], Pacurar [9] extended
used this idea and proved fixed point theorems and its applications in b-metric spaces.

Fagin et al. [10] used relaxation in triangular inequality and called this new distance measure as non-linear elastic
matching (NEM). Similar type of relaxed triangle inequality was also used in many fields. Inspired by all these
applications, Kamran et al. [11] introduced the concept of extended b-metric space and generalized many pre-
existing results in literature. Algahtani [12] presented the extension of rational inequalities, and W. Shatanawi in
[13] discussed new types of contractions in extended b-metric spaces.

In this paper, we extend and improve the results of Mlaiki et al. [1] and prove common fixed-point theorems for
two self-mappings in extended complete b-metric spaces using rational type contraction without assuming the
continuity of any mapping.

2, Preliminaries.

Definition 2.1 [4] Let X be a non empty set and s = 1 be a given real number.

Afunctiond, : X X X — [0, ) is called b-metric if it satisfies the following properties for each x,y,z € X —
(b)) dp(x,y) =0 & x = y;

(b2) dp(x,y) = d(y, x);

(b3) dp(x,2) < s[dy(x,y) + dp(¥,2)].

The pair (X, d) is called a b-metric space.

Example 2.1. Let X = [,(R) with 0 < p < 1 where [,(R) = {{x,} © R: ¥7_4|x,|P < o}. Define d, :
X X X - R*as-
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1
had p
dy(y) = | ) b = 3al?
n=1 .
where x = {x,},y = {y.}. Then (X, d,) is a b-metric space with coefficient s = 2r.

Example 2.2. Let X = L,[0,1] be the space of all real functions x(t),t € [0,1] such that follx(t)lpdt < oo with
0 < p < 1. Defined,: X X X » Rt as

[u

1 [
dp(x,y) = (f lx(©) - y(t)lpdt>
0
1
Then (X, d,,) is a b-metric space with coefficient s = 2.

The above examples show that the class of b-metric spaces is larger than the class of metric spaces. When s = 1,
the concept of b-metric space coincides with the concept of metric space.

Definition 2.2 [14] Let (X, d;,) be a b-metric space. A sequence {x,} in X is said to be:

() Cauchy if and only if d(x,, x,,) = 0asn,m — oo;

(I1) Convergent if and only if there exist x € X such that d(x,,x) » 0asn — oo and we write lim x, = x;
n—-oo

(II1) The b-metric space (X, d;,) is complete if every Cauchy sequence is convergent.

Definition 2.3 [11] Let X be a non-empty set and 6: X X X — [1,0). A function dy: X X X — [0, ) is called an
extended b-metric if for all x, y, z € X it satisfies:

(dgl) dg(x,y) =0iff x = y.

(dg2) do(x,y) = dg(¥,%).

(dg3) do(x,2) < 0(x,2)[dg(x,y) + dy(y,2)].

The pair (X, dy) is called an extended b-metric space.

Remark 2.1. If 6(x, z) = s for s = 1, then we obtain the definition of a b-metric space.

Example 2.3 Let X = Z*. Define 6: X x X - R* and dy: X X X - R* by
O(x,y) =x+y+1
And
dg(x,y) = |x| + |yl
Then (X, dg) is an extended b-metric space.

Example 2.4 Let X = C([a, b],R) be the space of all continuous real valued functions define on [a, b]. Then X is
complete extended b-metric space for dg(x,y) = sup |x(t) — y(t)|* with 8(x,y) = |x(t)| + |y(t)| + 2 where
tela,b]

0:X X X - [1,00).

Definition 2.4 [11] Let (X, dy) be an extended b-metric space.
(i) A sequence {x,} in X is said to converge to x € X, if for every € > 0 there exists N = N(¢) € N such that
dg(x,,x) < € for all n > N. In this case we write lim x,, = x.

n—-oo
(ii) Asequence {x,}in X is said to be Cauchy, if for every ¢ > 0 there exists N = N(¢) € N such that dgy(x,,, x,) <
eforallm,n > N.

Definition 2.5 [11] An extended b-metric space (X, dy) is complete if every Cauchy sequence in X is convergent.

Lemma 2.1 [11] Let (X, dy) be an extended b-metric space. If dg is continuous, then every convergent sequence
has a unique limit.

3. Main Result.

Theorem 3.1. Let P, Q: X — X be self-mappings with (X, d,) be an extended complete b-metric space and for all
distinct x,y € X-
dt(xl Px)dt(y! Px) + dt(yf QY)dt(X, Qy)
d,(Px, <é&d.(x,y)+
t( Qy) 61 t( y) 52 dt (x, Qy) + dt(y, Px)
where d; (x,Qy) + d.(y,Px) # 0,0 < é, + &, < 1,&,&, € [0,1). Then P and Q have a unique common fixed point
in X.
Proof. Let s, € X be arbitrary and {s,, } be a sequence in X such that
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Sn+1 =PSn'Sn+2 = Q3n+1-

Then
dt(sn!PSn)dt(sn+1:PSn) + dt(5n+1: an+1)dt(sn: an+1)
d.(s,.1,S =d,(Ps,,0s < é&d.(s, s +
t( n+1 n+2) t( n Q n+1) 8;1 t( n n+1) 62 dt (Sn:QSn+1) + dt(sn+1:PSn)

_ dt(sn' Sn+1)dt(sn+1' Sn+1) + dt(sn+1' Sn+2)dt(sn' 5n+2)
=$§1d;(Sn)Sns1) + &2

dt (Sn' Sn+2) + dt(sn+1' Sn+1)
= &1d¢(Sp, Snv1) + $2d(Sns1, Sne2)

which implies

$
dt(sn+1'5n+2) < 1 _152 dt(sn'5n+1) = fdt(sn' Sn+1)
1
", € [0,1).

Applying it recursively, we get

where & =

di(Sns1r Snez) < §7di(So, 51)-
Since ¢ € [0,1), we have
rlll_)no’{) d¢(Sn+1,Sn42) =0
Or
111_{210 d¢(Sp, Spt1) = 0.
Now for m > 1, using the triangular inequality, we have
dt(sn' Sn+m) = t(sn' 5n+m) [dt(sn' Sn+1) + dt (Sn+1' Sn+m)] = t(Sn, Sn+m)dt (Snt Sn+1) + t(sn' 5n+m)dt(sn+1' Sn+m)
< t(sn' 5n+m)€ndt(50' 51) + t(sn' Sn+m)t(5n+1' Sn+m) [dt (Sn+1' Sn+2) + dt(5n+2' 5n+m)]
= t(sn' Sn+m)€ndt(50151) + t(sn' Sn+m)t(5n+1'Sn+m)fn+1dt(50' 51) i1 i
1= L
+ +dt(sn' Sn+m) e t(sn+m—1' Sn+m)€n+m_1dt(50' 51) = fndt(SO' 51) Z fi 1_[ t(5n+p' 5n+m)-
n+m-1 p=1
Using the ratio test, it can be deduced that the series Y535, € [15= t(Sp4p, Snem) IS convergent to some S, €
(0, ), we have
dt(sn: S1‘L+1Tl) < fndt(SOI Sl)Sm-
Asn — oo, we conclude that the sequence {s,,} is a Cauchy sequence in the extended complete b-metric space (X, d,).
Therefore there exists s € X such that

lim s, =s.
n—oo
To show
Ps =s.
We have

d;(Ps,s) < t(Ps,s)[d¢(Ps,QSp41) + de(QSp41,5)]
< t(Ps,s)d:(QSp+1,5)

+ t(Ps,s) ['f1dt(5: Sp+1) &2

d¢(s, Ps)d(Sps1, Ps) + de(Spi1, QSn+1)de (s, an+1)]
d; (s,Q5p41) + di(Spe1, Ps)

di(s, Ps)dy(Sns1, PS) + di(Spi1, Sn42)de (S, Spa2)
d; (s,Sn42) + di(Sp41, PS)

= t(PS' S)dt(sn+215) + t(PS' S) gldt(s' Sn+1) + EZ

Asn - oo, we have
d:;(Ps,s) < t(Ps,s)é,d. (s, Ps).
Since &, € [0,1), we have d.(Ps,s) = 0. Hence

Ps =s.
Similarly, we can show
Qs =s.
Therefore P and Q have a common fixed point in X i.e.
Ps = Qs =s.

To show uniqueness of the fixed point, let z # s be another fixed point of P and Q i.e.
Pz=(Qz=2zPs =Qs =s.
Then
d.(z,Pz)d.(s,Pz) + d.(s,Qs)d.(z,Qs)

d; (z,Qs) + d.(s,Pz)

di(z,s) = di(Pz,Qs) < §;d.(z,5) + &

Since &, € [0,1), we have d;.(z,s) = 0i.e.z =s.
This completes the proof.

=§,d.(z,5).

If we put Q = P, we get the Theorem 2.1 of Mlaiki et al. [1] without continuity of P.

Corollary 3.1. Let P: X —» X be self-mapping with (X,d,) be an extended complete b-metric space and for all
distinct x,y € X-
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d.(x, Px)d.(y, Px) + d.(y, Py)d.(x, Py)
d Px, P <é&d X, +
e y) < &de(x,y) + &, d, (x,Py) + d.(y, Px)

where d; (x,Py) + d.(y,Px) # 0,0 < & + &, < 1,§,,&, € [0,1). Then P has a unique fixed point in X.

Theorem 3.2. Let P, Q: X - X be self-mappings with (X, d;) be an extended complete b-metric space and for all

distinct x,y € X-
d;(x,Px)d,(x,Py) + d.(y,Qy)d.(Px, d;(x,Px)d;(y, Px) + d.(y,Qy)d;(x,
d,(Px,Qy) < £,d,(x,y) + &, ¢(x, Px)d,(x, Py) ¢(y,Qy)d.(Px 3’)+ \ ¢(x, Px)d,(y, Px) (v, @y)d:(x, Qy)
de (x,Qy) + dc(y, Px) de (x,Qy) + di(y, Px)
where d; (x,Qy) + d.(y,Px) #0,0 <& + & + & < 1,§,&,,& €[0,1). Then P and Q have a unique common fixed
pointin X.

Proof. Let s, € X be arbitrary and {s, } be a sequence in X such that
Sp+1 = PSpySnyz = QSpqa-

Then

d¢(Sp+1,Sn+2) = de(PSy, QSpi1)

< fldt(Sn, Sn+1) + 52 dt(sn' Psn)dt(sn' P5n+1) + dt(sn+1' an+1)dt(PSn' 5n+1)

dt (Sn' Q5n+1) + dt(sn+1t Psn)
f dt(sn' Psn)dt(5n+1rpsn) + dt(sn+1t an+1)dt(sn: Q5n+1)
3 d; (Sp, QSps1) + di(Sne1, PSp)

< &,d, (s, 5001) + &, d¢(Sp, Sns1)de(Sny Sp2) + de(Spt1, Sn2)de (Sps1s Sps1)
d¢ (Spy Sp+2) + de(Spi1, Sps1)
+ f dt (Sn' Sn+1)dt(5n+1' Sn+1) + dt(sn+1t Sn+2)dt(5n' Sn+2)

3 dt (Sn' Sn+2) + dt(sn+1' Sn+1)

= &1de(Spy Snv1) + §2d:(Sp, Snar) + &3d(Snars Snaz)

Ss1+6

di(Sp+1,Sn42) < ?dt(sntsn+1) = &di(Sn Sn+1)
3

which implies

where ¢ = P € [0,1).

Applying it recursively, we get

§1+62

di(Sns1r Snaz) < $"di (8o, 51)-
Since ¢ € [0,1), we have
lim d¢(Sp41)Sne2) =0
n—-oco
Or
lim d; (s, Sp41) = 0.
n—-oo
Now for m > 1, using the triangular inequality, we have
dt(sn' Sn+m) = t(sn' Sn+m) [dt(snr Sn+1) + dt (Sn+1' Sn+m)] = t(sn» Sn+m)dt (Sn» Sn+1) + t(sn' Sn+m)dt(sn+1' Sn+m)
=< t(sn' Sn+m)€ndt(501 51) + t(sn' Sn+m)t(sn+1: Sn+m) [dt (Sn+1: Sn+2) + dt(5n+2' Sn+m)]
= t(sn' Sn+m)€ndt (So, 51) + t(sn' Sn+m)t(sn+1: Sn+m)fn+1dt(50: 51)
i=1 i
+ +dt(snv Sn+m) e t(sn+m—1r Sn+m)€n+m_1dt(50: 51) = fndt(SO: 51) Z Ei 1_[ t(snﬂ?' Sn+m)'
' o n+m-1  p=1
Using the ratio test, it can be deduced that the series Y535, € [15= t(Sp4p, Snem) IS convergent to some S, €
(0, ), we have
dt(sn: Sn+m) < fndt (50' Sl)Sm-
Asn — oo, we conclude that the sequence {s, } is a Cauchy sequence in the extended complete b-metric space (X, d;).
Therefore there exists s € X such that
lim s, =s.
n—oo
To show
Ps =s.

We have
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d;(Ps,s) < t(Ps,s)[d.(Ps,Qsp41) + di(QSp41,5)]

< t(Ps,s)d(Qsp+1,5)
de(s,Ps)d.(s, Pspi1) + de(Sps1, QSn+1)de(PS, Spy1)

+ t(Ps,s)[ di(s,Spe1) +

fade nr &2 d; (5,QSp41) + de(Spy1, Ps)
di (s, Ps)d;(Sps1, PS) + de(Spi1, QSpns1)de(S, QSni1)
3 dt (S: QSn+1) + dt(sn+1' PS)

< t(Ps,s)d¢(Sp+2, )
dt(S, Ps)dt(sl Sn+2) + dt(sn+1'5n+2)dt(PS' Sn+1)

+ t(Ps,s) [{ di(s,Sp41) + &

e nr 2 dt (S'Sn+2) + dt(5n+1ﬂps)

di(s, Ps)di(Spy1, PS) + die(Spt1, Sn2)de (S, Spe2)
di (s,Spt2) + di(Spi1, Ps)

3

Asn - oo, we have
d;(Ps,s) < t(Ps,s)é;d.(s, Ps).
Since &5 € [0,1), we have d.(Ps,s) = 0. Hence
Ps =s.
Similarly, we can show
Qs =s.

Therefore P and Q have a common fixed point in X i.e.
Ps = Qs =s.
To show uniqueness of the fixed point, let z # s be another fixed point of P and Q i.e.
Pz=Qz=12z;Ps =(Qs =s.
Then
d.(z,s) = d;(Pz,Qs)

< &de(z,8) + &

= $1d:(z,5).
Since &, € [0,1), we have d;(z,s) = 0i.e.z =s.
This completes the proof.

d.(z,Pz)d.(z,Ps) + d.(s,Qs)d.(Pz,s) d.(z,Pz)d.(s,Pz) + d.(s,Qs)d.(z,Qs)
d; (z,0s) + d.(s,Pz) 3 d; (z,0s) + d.(s,Pz)

If we put Q = P, we get the Theorem 2.2 of Mlaiki et al. [1] without continuity of P.
Corollary 3.2. Let P: X — X be a self-mapping with (X, d;) be an extended complete b-metric space and for all

distinct x,y € X-
dt(xl Px)dt(xl PY) + dt(y,PY)dt(Px»)’) dt(x) Px)dt(y! Px) + dt(y'Py)dt(x'PY)

d;(Px,Py) < &d.(x,y) +
(PP S Side0y) 6 4. Py) + 4,0, Po) : 4 Py) + 47, P)
where d; (x, Py) + d.(y,Px) £ 0,0 < & + &, + & < 1,&,,&,,& € [0,1). Then P has a unique fixed point in X.
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