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ARTICLE INFO ABSTRACT

A data stream process is usually referred as a event stream process which uses data
streaming platform to automatically integrate data from various sources, manage,
organize and act upon the data on the fly as it is generated. As the world undergoes digital
transformation, organizations leverage data streaming platforms to create new business
opportunities. The platforms help to strengthen the competitive advantage and make the
organizations’ existing operation more efficient. In real-time applications, data is
processed with an unbounded data stream which provides immediate insights for making
any decision in analytical applications like marketing, finance, sales and more.
Windowing is one of the most efficient processing methods to process data streams where
unbounded stream of data or event is split into finite sets or windows based on specific
criteria such as time, count of data elements or a condition. For making analytical
decisions in real-time, it is a great challenge to handle data streams with efficient
performance in an accurate manner. In this work, Sliding Window Aggregation (SWAG)
algorithms are analyzed with synthetic datasets experimentally for a data stream process
to measure the performance based on throughput and latency. Two-Stacks, Two- Stacks
Lite, DABA, and DABA Lite algorithms are analyzed in this work on the synthetic dataset.
Among these algorithms, DABA Lite performs well in terms of throughput and latency.

Keywords: Data stream process, Sliding window aggregation, Partial aggregate, Final
aggregate, Dynamic memory allocation

1. INTRODUCTION
An introduction and need for data streaming and processing are presented in this section.

1.1 Data Streaming and Processing

Streaming means a delivery method of media content (either live or recorded) to a device using the internet in
real time. Data streaming or streaming data is a continuous generation of data in various formats and sizes, by
various sources like applications, sensors, server log files, website activities and more. It can also be referred
as a technology that allows the users to access the data content immediately in real time rather than waiting
for it to be downloaded. Thus streaming data can be used to analyze it in real or near real-time. Two common
use cases of data streaming are streaming media (especially video) and real- time analytics. Real-time analytics
refers to the processing and analyzing of undesirable events of fast moving data streams. It helps an
organization to raise real-time actions or alerts automatically making proactive decisions instead of reactive
decisions. It is analyzed on the basis of On-demand analytics or Continuous analytics. On-demand analytics
provides data or computation results on the basis of demand made by the user/application and Continuous
analytics process the streaming events in a continuous manner to end users, applications or a data store. Real-
time analytics is an intellectual process usually done in business related fields. Business analytics and business
intelligence are used interchangeably [1] whenever the terms differ in purpose and methodology. Business
analytics provides predictive analysis (what will happen in the future) and Business intelligence provides
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descriptive analysis (what happened and why it happened).

Stream Processing refers to the process of computing continuous data in motion (unbounded data stream)
directly when it is received or produced. The unbounded stream has a beginning but no end and processing of
it is referred as stream processing.

Now-a-days, as data scientists need to work with overwhelming amount of information for faster analytics,
data stream access becomes an important case to fill in the space between IT and business. Because of its
dynamic nature, data streams have to be scalably processed with limited time and memory. This is the
motivation to work on this concept.

1.2 Need for Stream Processing

A data stream processing platform is needed to process vast amount of data with low latency and high

throughput. A stream processor collects, analyzes and visualizes the continuously flowing data. In real-time,

the majority of data is produced from a series of events as continuous streams like sensor events, financial

trades and user activity in a website. On receiving an event from a stream, a stream processing application can

react to that event, trigger an action, update an aggregate or a statistical value, and recall that event for further

reference.

A stream processor is responsible for efficiently handling multiple jobs of an event, scaling and fault tolerant

computation. Some of the use cases of a stream processor are fraud detection, anomalous event detection, and

predictive analysis and so on. Generally, as data stream originates from heterogeneous sources a data stream

processing platform must be capable to handle the following challenges:

* to deal with data loss and damaged data packets

* time critical nature of data stream demands fast enough, high performing fault tolerant system as mentioned
by liang nei and others in [2]

* to handle the load dynamically based on the data stream transmission

* handle the out of order sequence of data efficiently [3]

In data stream processing, delay is an unavoidable criteria faced due to network congestions, slow processors
or back pressure and would lead to loss of data, which in turn affects the throughput of the system. Thus the
main objective of this work is to find an optimized technique providing a higher throughput and lower latency
for a data stream process.

The contribution of this work concentrates in measuring the performance metric of a data stream process with
various SWAGs in terms of throughput and latency which are the essential parameters that are responsible for
an efficient data processing system.

2. Literature Review on SWAGs

Research community has contributed many innovative implementations on SWAGs. Before discussing the
related works on SWAGs, a brief note on the popular optimization techniques for handling a data stream
process named windowing and aggregation are given in this section.

In a data stream process, memory management acts as a basic metric factor to promote the performance. When
a data stream process is handled with SWAG, the method of computation of aggregation is to be analyzed for a
better performance.

2.1 Windowing for an Efficient Data Stream Process

A stream processor uses a vital concept called windowing to handle the unbounded incoming data. Windowing
is an approach used to break the data streams into finite streams to apply some transformation in them.
Different types of windowing are available and can be chosen based on the computation requirement. Different
types of windowing strategies are tumbling, sliding, session and global windows.

In this work, a sliding window strategy is used for analysis and message count is taken as a windowing criteria.
A Sliding window is defined with a window size and a slide size where computation of data is done during the
slide size interval. It contains overlapping data that belong to more than one window.

Thus the different window types operate on some predefined mechanism to fire computation of data when a
condition is met or a trigger is fired.

2.2 Need for Aggregation in Sliding Window Computation

Sliding window computation leads to a high degree of redundant computation due to a large number of
common data elements as the window slides. Several optimization techniques have been developed by
researchers for processing replicated data for the enhancement of effective storage and fast computation.
Sliding window aggregation is one such optimization technique where data de-duplication is done by an
aggregation function to produce aggregate values from a collection of data elements. This technique involves
incremental computation as the window contents change over time.

Companies rely on software tools for data aggregation. The aggregated data is analyzed to create actionable
business intelligence and guide for a decision-making process to improve the business as developed by Jun Wu



C. Kalyani et al. / Kuey, 30(7), 9136 1256

and Luo Zhong [4]. Hence data aggregation is an essential process in this fast world in almost all the fields like
investment and finance, travel [5], banking, healthcare and education.
In the following section, SWAGs implemented by the research community are discussed.

2.3 Related works on SWAGs

Arasu and Jennifer designed a technique called B-Int (Base Interval) [6] with a shared window holding all the
windows for computation of aggregation. It uses multi- level data structure containing dyadic (base) intervals
of varying length capable of handling FIFO windows. Base intervals taken for computation, depends on the
position of data item and not the position of the window. This algorithm uses simple array treated as a circular
buffer and does not support dynamic memory management. Jini Li et al. proposed a technique named panes
[7] for computing sliding window aggregate queries using disjoint panes where the pane aggregates are finally
rolled up to get window aggregates within a single query. This technique does not execute multiple sliding
window queries. Sailesh Krishnamurthy et al. designed an approach named pairs [8] for a streaming system
that splits the window slides into two equal fragments where the length of the slide is computed by finding the
least common multiple of the slides. It proves paired (shared) windows are superior to paned (unshared)
windows. Thanaa et al. adopted two approaches for incremental evaluations namely input triggered and
negative tuple approach [9]. In input triggered approach, expiration of tuples is based on the timestamp of the
newly inserted tuple. In negative tuple approach, the unpredictable delay is handled by maintaining the tuple
flow on any insertion or eviction. Anatoli at el designed a technique named Flatfit[10] that works with the reuse
of intermediate window aggregates with heavy workloads with an index data structure. It is the first sliding
window processing technique with time complexity of O (1). In a data stream process, on meeting a high degree
of overlap across windows, Capri Balkesen and Nesime Tatbul designed a pane based partitioning strategy [11]
with two alternative partitioning strategies based on batching and pane based processing. It promotes the scale
-up behavior. Pramod Bhatotia et al. designed a sliding window computation framework called Slider [12] with
self-adjusting contraction tree data structure that updates the computation during window slide and reuses
result from prior computations. It uses balanced tree structure. Tangwongsan et al. proposed a technique called
Reactive Aggregator [13] using balanced trees. Partial aggregated data of the sub trees are stored in the internal
nodes and a flat array. It handles non invertible or commutative aggregation functions. The pointer less
structure also works with Non-FIFO windows. Martin hirzel et al. presented a technique Subtract On Evict
(SOE) [14] that uses the previous computed aggregated data to find the current one by updating the aggregated
data on each insertion by finding the symmetric difference on each eviction. It does not support invertible
operations in aggregation operations. Martin also suggested a SWAG algorithm named order statistics tree [14]
for a median like aggregation operation where the data is stored in both queue and tree. The aggregation
computation is made by implementing the median of the query using sub tree statistics in a balanced search
tree. Carbone et al. designed a hybrid optimization technique [15] by combining pre aggregation technique
cutty [Carbone et al., 2016] with window slicing [pairs] by a process of decomposing windows into non
overlapping partial aggregates that are shared and combined to calculate the final aggregate. Anatoli U shein
proposed an algorithm named Slick Deque[16] to process invertible and non-invertible aggregations uniformly
supporting multi-query processing with optimized memory management. It does not support dynamic and
multi-node environments. Jonas traub et al. also proposed a technique named Scotty [17] an efficient open-
source operator to compute sliding window aggregation using stream processing systems like Apache Flink,
Apache Beam, Apache kafka, Apache samza and spark for count based windows. Jonas traub et al. presented a
general Stream slicing technique [18] for window aggregation to build partial aggregates and share among
concurrent queries of overlapping windows maintaining a slice metadata holding the start and end timestamp
of a slice. It scales with many number concurrent windows. Apart from the SWAGs discussed, optimized
techniques based on the memory management, the following algorithms are analyzed in detail in the section 4
to measure the performance metric based on the throughput and latency which are the essential metrics for an
efficient data stream process. Tangwongsan et al. used a FIFO window mechanism with a simple data structure
named Two-Stacks [19] with two fields to hold data and its aggregation in two stacks namely front and back
stack used for eviction and insertion of window elements respectively. In order to improve the space
complexity, Tangwongsan also proposed an invariant of Two-Stacks technique named Two- Stacks Lite [20]
comprising of a single double ended queue maintaining a single field either to hold data or aggregation. One
additional aggregation field at the back stack is maintained to hold aggregation updation during insertion.
Martin et al. implemented a chunked Array queue data structure interlinked with different reference pointers
for aggregation operation called DABA (De Amortized Banker’s Aggregator) [21]. The data structure maintains
two virtual sub lists, the front and the back sub list for insertion and eviction of window elements. Two-Stacks
and DABA works with a space complexity of 2n (for a window size n) to compute the aggregation. To improve
the space complexity, Martin et al. also introduced an invariant of DABA named DABA Lite [22] with two
additional aggregation fields for the front and the back sub lists for updating the aggregation. DABA Lite
improves the space complexity by n+2 Thus it outperforms DABA in memory management.

3. Design of SWAG model

Data stream processing architecture depicting a sliding window aggregator approach is presented in this
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section. Before analyzing the SWAGs for its performance, it would be a great advantage to view a design model
of SWAG for a better understanding.

SWAG is a technique generally based on the term sliding window processing approach where the content of
the window and how often the aggregation is to be computed is determined dynamically based on various
windowing semantics like count based (for eg. past 100 elements), time-based (for eg. past 10 mins) as in [23]
or on the basis of both. Based on the data stream processing architecture, a SWAG model can be designed with
input, process and output modules to handle the data stream process efficiently as shown in the figure 3.1.

Storage and Presentation
Synthetic data Stream (or) Event Processor g
: - s Information Data Access /
Data Continuous Logic Processing delivery layer Analytical layer
Collection Sliding window Aggregator
b o
> Reaul
Channel s
Sliding Store
OHGEIRGE window Aggregation |
rigin o Aggregation|[ 7 | Operations - -
Data Algorithms Messaging ' AnTalytllcal
Streams L

Fig. 3.1 Data Stream processing Architecture depicting sliding window Aggregator Approach

The SWAG model comprises of the following modules:
e Origin of Data streams (as input module)

e Stream or Event Processor (as process module)

e Storage and Presentation (as output module)

Generally, in data stream applications, origin of data streams takes place from different data sources like IoT
devices, sensors or applications. This module acts as an input layer for a data stream process. In this work, the
synthetic dataset is utilized and is originated from the DEBS 2012 Grand Challenge, a public dataset. Synthetic
dataset is an artificial production of data that resembles the real world events. It is algorithmically created that
can be used as a test dataset of production (as used in this work) or as an operational data to manipulate
mathematical models or to train machine learning models. These data are ingested into the stream processing
platform through a data collection channel.

Stream or Event processor acts as a central platform for continuous logic processing. Generally, Data Stream
Processing System (DSPS) processes the live, raw data immediately as it arrives. The requirements of a DSPS
are provided by Stone braker et al. [24] in a detailed manner. It also handles the challenges of incremental
processing, scalability and fault tolerance in a data stream process. Hence a DSPS is necessary to overcome
gaps in processing huge data volumes as data streams have to be processed on the fly. In this work, computation
of the aggregation is the data stream process and is performed by SWAG using a user defined aggregation
operation like sum, count, max, maxcount and so on. In this work, input data is originated from synthetic
dataset and the aggregation operation to be performed (in this work max and maxcount) is defined by the user.
The aggregation operation max returns the maximum of window elements and maxcount returns count of
occurrence of the maximum in the window elements. SWAG uses a popular optimization technique called
windowing to break data into finite streams with an implementation of data structures like stack and queue. A
stream processor opens a window when it receives the first data element and closes when it meets some criteria.
The criteria can be based on time interval, count of data or a condition. This work deals with count based data
which is also given as an input. The window size varies from 2,4,8,16,32....512. For a specific window size n,
computation of aggregation is performed on each window slide by various SWAG algorithms. The window slide
is taken as one. The computed information is measured for throughput and latency performance. The combined
technique of sliding window with aggregation operation is called Aggregate Continuous Query (ACQ). Basically,
SWAG algorithms are implemented to handle in-order and out-of-order data stream [25]. This work computes
the aggregates for the synthetic datasets to measure the performance metric by analyzing various in-order
SWAG algorithms.

Storage and presentation are the two main supporting systems in data stream processing. This module acts as
an output layer in the design model. The storage system acts as an information delivery layer which maintains
a summary of the input data stream and the results of the computation that can be used for future references.
It also acts as a service on demand by an end user. The presentation system can be used by the consumers to
visualize the data. It acts as a messaging system to generate reports /an analytical system to alert the end users.
In case of real-time applications for example in case of online retail store, the order placement (data) would be
more frequent during working (peak) hours and less frequent during non-working hours. So it is necessary to
scale the window sizes based on the requirement. In this work, four In-order SWAG algorithms are analyzed
experimentally on a synthetic dataset of 200 million items for 200 iterations and the performance is measured
in terms of throughput and latency for varying window sizes.
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4. In-order SWAG algorithms

In data stream processing, selection of suitable windowing and aggregation mechanism helps to minimize the
latency to a greater extent. Memory footprint plays a major role in improving the performance metric of a data
stream process. Memory allocation and deallocation of a data stream process is efficiently handled dynamically
using pointers. In this work, data from synthetic dataset ingested into the window elements are taken for
continuous logic processing for a user defined aggregation operations max and maxcount. The continuous logic
processing in SWAGs involve the three following basic operations namely insert, evict and query.

Insert () - Inserts window elements in to the data structure maintained. In SWAG, during initial insertion of
window elements in to the data structure, the aggregation is computed with the identity element.

Evict () - Removes the oldest window element from the data structure during a window slide.

Query () - Returns the computed aggregated data for a given data stream process. In case if the data structure
is found empty, the aggregation is computed as one.

Following section details the four in-order SWAG algorithms taken for this comparative study.

4.1 Two-Stacks algorithm

Two-Stacks is a simple in-order SWAG algorithm with a data structure comprising of two stacks namely, the
front stack (being rotated 9o° left) and the back stack (rotated 9oe right). These stacks maintain three pointers
F, B and E. The pointer F denotes the top of the front stack that facilitates insertion of window element into it
and the E denotes the top of the back stack that facilitates eviction of window elements from it. The pointer B
denotes the bottom of the two stacks that is visualized at the center to avoid clutter. The figure 4.1 depicts the
general form of Two Stacks algorithm.

valn val2 vall vall val2 valn val
vallval2 | cooeeee vallval2 | vall vall vallval2 [ cooeeeee vallval2 | 500
..... valn e o)

'
v
m

Fig 4.1 General form of Twostacks data structure

In the Two-Stacks algorithm, each element in the stack contains two fields val, denote the window elements as
vali, val2...and agg , which denote the computed aggregated data as vali.valz.val3 where . denotes the
aggregation operation performed chosen by the user.

4.1.1  Pseudo Code for Insert, Evict and Query operation in Two-Stacks

Insert ()

1. Pushes an element (say val1) onto the top of the back stack

2. Computes partial aggregation of pushed element and the previously inserted elements i.e., vali.val2. valn.

Evict ()

1. Pops element from the front stack if the front stack is non-empty.

2. If front stack found empty, a flip operation is activated by pushing all elements from the back stack to front
stack along with the partial aggregation computation done in a reverse direction.

Query ()

1. Pops the computed aggregated value from front and the back stack

2. If the front or the back stack is empty, the aggregation is set to the identity element 1 for computation
of aggregation.

In this algorithm, as the window size increases, the implementation of flip operation leads to the degradation
of performance thus affecting the throughput. For a window size n, it consumes a space complexity of 2n stored
partial aggregates. In order to improve the performance, Two-Stacks Lite algorithm has been developed.

4.2 Two-Stacks Lite algorithm

Two-Stacks Lite algorithm data structure comprises of a single double-ended queue with three pointers F, B
and E. The pointer F points to the start of the queue, B points to the location between the start and end of the
queue and E denotes the end of the queue. The pointer B separates the queue into two virtual sub lists Ir and
Is. For a window size n, in order to reduce the space complexity to store the computed partial aggregated data,
Two-Stacks Lite maintains data elements with one additional aggregate field aggB in the back sub list I to store
the aggregated data instead of n aggregate fields as in Two-Stacks algorithm. The general form of Two-Stacks
Lite algorithm is depicted in the following figure 4.2.
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Fig 4.2 General form of TwostacksLite algorithm

Fig 4.2 General form of Two-Stacks Lite data structure

Similar to Two-Stacks algorithm, insertion of window elements is made in the back sub list Iy and eviction of
window elements is made in the front sub list Ir. In Two-Stacks Lite algorithm, the partial aggregation is carried
out towards right in the sub list Iz and towards left in the sub list Ir. Unlike Two-Stacks algorithm maintaining
n partial aggregates, the Two-Stacks Lite algorithm maintains the partial aggregation of the entire front sub
list Ir at the front end of the queue F and the partial aggregate of the entire sub list I in the additional partial
aggregate field aggB. Thus it consumes a space complexity of n+1 partial aggregates.

4.2.1 Pseudo code for Insert, Evict and Query operation in Two-Stacks Lite

Insert ()

1. Enqueue the window element in to the back sub list.

2. Computes the partial aggregation of inserted elements and is maintained in the aggB field

Evict ()

1. Dequeue the element from the front sub list if the front sub list is non-empty

2. If front sub list found empty, all the elements from the back sub list are enqueued in to the front sub list.
Computes the partial aggregates of the enqueued elements in the reverse direction in the front sub list.

Query ()

1. Dequeue the computed aggregation by aggregating the front sub list and the back sub list (maintained in
the aggB field)

2. The aggregation is computed as an identity element 1 in case of empty sub lists.

Even though the space complexity is improved than Two-Stacks algorithm, the flip operation again makes the
implementation expensive and time-consuming as the window size increases. Thus to handle the flip operation
efficiently, DABA algorithm has been developed.

4.3 DABA (De Amortized Banker’s Aggregator) Algorithm

DABA is an in-order SWAG algorithm that stands for De Amortized Banker’s algorithm. It differs from Two-
Stacks and Two-Stacks Lite algorithms by an early flip operation to improve the performance.

DABA data structure comprises of a queue of data elements which is a structure containing two fields val to
store the window elements and agg to store the partial aggregates as shown in the following figure.

p q r s t u % w X y | val
p.g...w | q.r r s st Juvw | vw [ w x | xy | agg
L B E
Colps I IR = I
Ip Ig

Fig 4.3 General form of DABA datastructure

The data structure comprises of chunks of memory separated with six pointers F, L, R, A, B and E in the queue.
The pointers F and B forms a boundary for two virtual sub list Ir and Ig. The sub list Ir facilitates eviction of
data elements whereas sub list I facilitates insertion of window elements. From the Fig 4.3, it is observed that
the front sub list Ir is further divided into four sub lists namely Irs, I1, Iz and Ia.

The direction of computation of aggregation and the pointers maintaining the partial aggregation of the sub
lists can be tabulated.

Table 4.1 Pointers maintaining the aggregation value with the aggregation direction in the sub list

Sub list Irs, I, Ia  [Ir, Is
Pointer holding the aggregation F,L, A R, E
Aggregation direction Left Right

Insertion and Eviction Operations
During insertion and eviction of data elements of the window into the data structure, this algorithm performs
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some pointer restoration operations to restore the original size invariants of the pointer. It is shown in table
4.2.

Table 4.2 Pointer restoration operation to restore the size invariants of the pointers

Pointer Time of[Description Pointer Restoration Code
Restoration [Activation
operation
Flip Insertion, Flip operation is activated[Flip operation makes
Eviction during initial insertionand when|| Is | = | I. | = | Ir | = | Ia |
| I | =0
>= | Ir |
Shrink Insertion, Shrink is activated when |Irs |[During insertion
Eviction and |Ig|=0,|Ia|=|Ia|+1|Irs| =1, |I|=]| IR |

| I | are non- empty, and always[During insertion, shrink without flip makes | Ip
after aflip operation. Shrink|| =

executes with or without flip |Is|+1,]Ia|=]1a]|+1,]
IL| = | Ir|
During eviction, Shrink without flip makes
| Ia| =|Ia| + 1, | I | = | Ir| During initial
insertion,

shrink with flip is activated and is referred to as
the singleton case

Shift Insertion Shift operation is performed|Shift makes

during the insertion of windowlls | = |Is |+ 1, |Ia|=|Ia]-1

elements into the datastructure
when | Irs |> 0 and | I | and | Ig|
are empty

Query operation

Query operation is activated to retrieve the computed final aggregated data at an instant of time from the
computed aggregation of Ir and Is.

Even though the performance is improved by an early flip operation, two separate fields for each data for
maintaining window elements and its aggregation consumes memory and needs again a space complexity of
2n to store the partial aggregates. Thus to improve the performance, DABA Lite has been developed.

4.4 DABA Lite Algorithm

The working of DABA Lite algorithm resembles the DABA algorithm but it differs in data structure in
maintaining the data and its aggregation fields. The data structure of DABA Lite is depicted in the following
figure 4.4.

Ip.q.r...wl q,r] r S I t Iu.v,w[ v,wl w l o | v |
[ [ s.t Xy |
aggRA aggB
T ips I Ir Ta
Ip Iy

Fig 4.4 General form of DABALite data structure

Insertion and Eviction Operations
DABA Lite functions same as the DABA algorithm. During insertion and eviction, it follows the same set of
pointer restoration operations shown in table 4.2.

Query operation

During query operation unlike DABA, DABA Lite retrieves the final aggregation at any instant from the
aggregation of Iys and aggB field.

Thus in DABA Lite, the performance is improved by efficiently managing the memory with only two additional
fields for the entire sub lists. Thus it consumes only a space complexity of n+2 to store the partial aggregtes.
From the working nature of the above discussed algorithms, taking the window size to be n, the space
complexity for maintaining partial aggregations of SWAG can be summarized in table 4.3

Table 4.3 Space Complexity of In-order SWAG to compute aggregates

IAlgorithm Space Complexity
Two-Stacks 2n

Two-Stacks Lite n+1

DABA 2n

DABA Lite n+2
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On analyzing the working nature of the discussed SWAG, Two-Stacks Lite and DABA Lite algorithms handles
the memory resources efficiently. But DABA Lite outperforms Two- Stacks Lite by an early flip operation during
the insertion and eviction of window elements. For further analysis, the four SWAGs are measured for
throughput and latency for varying window sizes.

5. Result Analysis

Experimental analysis is made in this section with synthetic datasets with implementation in c++ and python.
The SWAG algorithms Two-Stacks, Two-Stacks Lite, DABA and DABA Lite are analyzed to determine the
performance metric in terms of throughput and latency.

5.1 Throughput Analysis

In a data stream process, the purpose of SWAG algorithm plays a vital role in analytical applications. In this
work, throughput is measured as the number of computation of aggregates per second. By varying the window
sizes from 1 to 512(where each window size is a power of 2, say 1, 2, 4, 8....512) on the synthetic dataset of 200
million data items, throughput analysis is made. The throughput is expressed as how many million items
(aggregates computed) are processed per second. The aggregation is calculated during the window slide for the
entire window elements. The throughput performance of the four algorithms Two- Stacks, Two-Stacks Lite,
DABA and DABA Lite is calculated experimentally for varying window sizes and is depicted in the table 5.1

Table 5.1 Throughput Analysis for varying window sizes
Window size

Algorithm 1 2 4 8 16 32 256 512

DABA 23.48 [21.27 [21.24 [21.33 [20.24 [21.38 [22.95 [23.75
DABA Lite 26.13 [25.31 [26.57 [27.10 [27.56 [26.93 [30.69 [30.64
Two-Stacks 23.97 [23.80 [23.97 [23.97 [23.90 [23.82 [23.18 [22.39
Two-Stacks Lite 22,79 [23.33 [23.38 [23.66 [23.77 [23.49 [23.30 [23.21

From the table 5.1, following observations can be noted. When the window size is gradually increased, the
algorithms other than DABA Lite do not exhibit much improvement in performance. But DABA Lite shows an
improvement in performance for increasing window sizes. Unlike DABA, DABA Lite maintains window
elements and its partial aggregates in separate sub lists for faster computation. So DABA Lite outperforms in
throughput performance than DABA with 26% increase. An early flip operation and the chunked memory
implementation in DABA Lite outperforms Two-Stacks with 17% increase and Two-Stacks Lite with 18%
increase. This brings the result that DABA Lite performs well with a stable increase in throughput than other
algorithms for varying window sizes.

The following figure 5.1 shows the graphical representation of throughput analysis for clear visualization.

35.00
30.00

25.00 AN

Throughput
20.00 —

(Millionitems DABALite
, 15. DABA
00 Twostack
10. Lite
00 —
50 Twostack
0

1 2 4 8 16 32 256

Fig 5.1 Throughput Analysis of SWAG Algorithms
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5.2 Latency Analysis

Latency is measured as the difference between the time taken by the data entering the stream processor (taken
as initial time) and performing the basic aggregation operations insert, evict and query (taken as processing
time) for each iteration. It is measured in terms of processor cycle which denote the delay between initial and
processing time. Executing each algorithm for 200 iterations, the least and the largest latency value in terms
of processor cycles are tabulated in the following table. The performance of SWAG algorithm will be high when
the latency value is low. The latency performance of the four algorithms Two- Stacks, Two-Stacks Lite, DABA
and DABA Lite is tested experimentally and is depicted in the table 5.2.

Table 5.2 Latency analysis of in-order SWAG algorithms for varying window sizes on a synthetic dataset of
200 million items for 200 iterations

window size
Algorithm 2 4 8 16 32 256 512
Least [Large |Least [Large |Least [Large |Least [Large [Least [Large [Least |[Large [Least [Large
DABA 155 70784 141 (724750131 (7020 {131 |93318[131 |50041{127 14938 127 |56698
9 9
DABA Lite 133 10794 [115 |[513400111 |55701(111 [53139(109 4456 109 [85138107 |51846
0
Two-Stacks [121 43424 (121 |51859(119 14944 (121 [7998 @121 327700121 4885 [119 71681
2 8 4
Two-Stacks [23 51371 101 |43071(101 3326 [101 4805 101 |48612{101 |46619[101 88392
Lite o 9

From the table 5.2, the following observations are noted. Latency values for the first processed data is
considered the least value and the last processed data is considered as the large value for 200 iterations. In all
the analyzed algorithms, the least latency value is more or less same. But the largest latency value varies for
varying window sizes. It can be observed that for a drastic change in window sizes, DABA Lite performs well
when compared with other analyzed algorithms. And in case of small change in window sizes, Two-Stacks Lite
performs well. Though both maintain a same structure with window elements and its aggregates in separate
sub lists, the flip operation in Two-Stacks Lite degrades its performance for larger window sizes than DABA
Lite. Even though the latency performance of Two-Stacks Lite and DABA Lite algorithms is more or less similar,
DABA Lite outperforms Two-Stacks Lite in throughput performance. So it is observed that DABA Lite can be
used for varying window environments.

6. Conclusion and Future Enhancement

6.1 Conclusion

In this work, in-order data streams are analyzed experimentally on synthetic dataset for the SWAG algorithms
namely Two-Stacks, Two-Stacks Lite, DABA and DABA Lite. Result analysis proves that DABA Lite performs
well in terms of both throughput and latency. The performance is consistent for adaptive window
environments. It is observed that the better performance of DABA Lite is achieved using chunked array
concept.

6.2 Future Enhancement

From the analysis, it is observed that chunked array concept provides a better performance. So it can be
implemented to handle out of order data streams. As windowing strategies perform with re-evaluation while
processing the data streams, the latency can still be improved using SWAG algorithms being implemented with
different data structures to achieve optimized solutions.
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