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ARTICLE INFO ABSTRACT

The rapid advancement of semiconductor manufacturing has driven the need for
increasingly precise metrology and defect detection techniques. Extreme
Ultraviolet (EUV) lithography, a key technology enabling the production of
smaller and more efficient integrated circuits, introduces complex challenges in
process control and defect inspection. Traditional methods struggle to keep pace
with the heightened resolution and precision required for EUV-based
semiconductor production. This paper explores the integration of machine
learning (ML) techniques into EUV metrology and defect detection, offering a
transformative approach to address these challenges. By leveraging advanced
algorithms such as deep learning, neural networks, and data-driven models, we
propose a new paradigm that enhances the detection of process-related defects,
improves the accuracy of dimensional measurements, and provides real-time
feedback for optimized manufacturing processes. The application of ML in this
context not only enables more efficient defect classification and reduction but
also offers the potential for predictive analytics that can proactively address
emerging issues in EUV lithography. This shift towards machine learning-driven
metrology represents a significant leap in semiconductor manufacturing,
promising to enhance yield, reliability, and performance in next-generation
integrated circuits.

Keywords: Machine Learning (ML),Extreme Ultraviolet (EUV) Lithography,
Defect Detection, Metrology, Semiconductor Manufacturing, Data-driven
Models, Deep Learning, Neural Networks, Defect Classification, Process Control,
Predictive Analytics, Yield Enhancement, Semiconductor Fabrication, Process
Optimization, Nanometer-scale Measurements.

1. Introduction

The semiconductor roadmap projects a continued reduction of device feature sizes smaller than 10 nanometers,
the advent of 5 nm and 3 nm process technologies raises new daunting challenges in fabrication, metrology,
and inspection. Extreme ultraviolet lithography has been introduced as the next-generation lithography
technology necessary to print computation-intensive devices on plain silicon. The trend toward manufacturing
devices with smaller feature sizes intensifies current issues with control and yield, stressing the need for
enhanced metrology and inspection. These tasks depend on rebuilding the device structure accurately,
underlining the role of CD SEM. Negative trend fluctuations are ascribed to uncertainty or error in modeling
and manufacturing processes in addition to random phenomena such as shot noise. Consequently, a deviation
between the idealized models and the actual device properties exists. However, conventional in-line metrology
is precluded by destructive methods. Therefore, more durable potentials, i.e., quantum dots or nanostructures
enable improved capacity to guard against device counterfeiting. There are a number of documented
procedures for detecting and feeling planarity and/or topography variations. The methodologies may vary from
a comparatively pristine topography overview plus comparison with chosen references to image processing and
analysis of Terrain Fluidity. Therefore, various depth analysis techniques have been implemented in order to
discriminate artifact structures in focus-based scanning electron microscopy images.
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At the same time, the semiconductor industry is bearing down a perfect catch in delivering large scale runtime
warehousing to safeguard a standard of performance close to an optimum. Lining up and implementing the
most efficient elements necessitates addressing several challenges. Optimization of Strategic Use of Existing
Resources: The entrance of new EUV defects of interest is non-avoidable in the design procedure. More
extended or extensive EUV processes are composed of complex subsets of masks and layers one-of-a-kind to
EUV lithography. Their release incriminates a large extent of preparation and labor related PSDs, for example
running process-segmented CD-SEM verifications for fab and prospects. Similarly, EUV defects induce a higher
extent of extraction of images from the known-good configuration of the mask, spontaneous verification and
further running comprehensive verifications. But a significant number of these operations may be reduced
invalidated by strategy, to concentrate effort on the most concerning layers, during a particular setup develop
of redefined mask check rules or debug planarity or geometry with mask SEM; the amplification of resources
or procurement of additional ones; this may involve limiting resources, e.g., investigation or in-sourcing of
SEM services.

Conventional EUV Lithography Simple Low Cost EUV
High power consumption > 1MW 1/10 times lower power <100kW
High capital cost 200 MUSD Lower capital cost < (100 MUSD)
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Fig 1: Ultraviolet lithography technology dramatically semiconductor manufacturing

1.1. Background of EUV Lithography

Extreme ultraviolet lithography is considered as the most feasible alternative to the existing patterning
solutions for manufacturing of future semiconductor devices at advanced technology nodes. A few stakeholders
in the semiconductor industry have already developed and made accessible everything for EUV patterning,
EUV masks, Tungsten-based etch stacks with EUV, and strict out-of-band contamination control in the fab.
Currently, semiconductor companies feature a variety of 1x mask exposure platforms designed for high-volume
manufacturing. Due to limitations in the existing mask inspection tools, the readiness of actinic mask
inspection is about 2020, based on experimental results utilizing pre-production prototype tools. As a result,
an unequivocal requirement exists to engage a 1x mask inspection tool qualified with industry-ready tools to
insert actinic mask inspection into the EUV mask making business.

Masks play a critical role in semiconductor manufacturing for photo-lithographic patterning of integrated
circuits. With the move to future technology nodes, the impact of mask defects on the printed wafer features is
expected to increase rapidly. There are two types of 1x masks: binary and phase shift. Binary masks contain
non-absorbing phase shifters which essentially creates the phase shift between the transmitted light in shaded
and clear areas of the pattern. Recovery of the features is made by the pattern on the mask. Another type of
mask is phase shift mask; phase shift is created by etching the quartz into the desired patterns. In phase shift
masks, the light passing through the chrome changes its phase. Although they serve the same purpose of
recovery of the features on the wafer, the technology is different. Considering the impact on the multi-
patterning, it is possible that one layer requires a combination of BIM-like and PSM-like subtractive
features.Additionally, the demonstrated method efficiency was made on both a large high-level lithography
PhD level and a mid-level industrial level coherent source lithography master thesis. It establishes the basis for
a subsequent more generally accessible road map of the developed methods. This can now be systematically
etched in greater detail for lithography master level studies and for the wider semiconductor industry.

Equ 1: Supervised Machine Learning Model (Classification)
Where:

s 4y is the predicted label (defect type or no defect).
¢ W is the weight matrix learned during training.
o F is the feature vector extracted from the image.

y — argmax(W - F + b)

e b is the bias term.
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1.2. Importance of Metrology and Defect Detection in Semiconductor Manufacturing

The semiconductor industry plays an increasingly important role in our daily lives, as found in nearly all
electronic devices such as computers, smartphones, televisions, automobiles or even toasters. Significant
progress has been made in integrated circuit (IC) industries over the last several decades, following the
observation of Moore’s Law which states that the number of transistors per silicon IC would double
approximately every two years. The way to downscale the device feature size has largely contributed to this
trend. In this respect, Extreme Ultraviolet Lithography (EUVL) has emerged as the leading potential candidate
for lithography for sub-10 nm nodes Half-Pitch patterning. EUVL is a complicated lithographic process
involving massively complex chemistries and physics. Process window metrology and defect detection are of
the utmost importance for any complex lithography with three-dimensional structures in Semiconductor
Manufacturing. EUVL replaces the DUV-based scanner tech nodes in semiconductor manufacturing, and the
identified methods developed, in this case, are the basis for any subsequent modification or improvements for
semiconductor manufacturing. Otherwise, this novel metrology and defect detection procedure have the
potential to be carried out to any alternative complex systems with EUVL based photolithography.

Given the widespread importance of the semiconductor industry, metrology is utilized for measuring, testing
and controlling a variety of features and materials relevant to the manufacturing process. The ultimate target
of semiconductor metrology is to build independent relationships with process variation and throughput. It
should be realistic to carry out a model-based metrology tool with a calibration cost above 1 million dollars.
There have been a number of metrology techniques widely employed in the semiconductor industry, such as
Scatterometry, CD-SEM, AFM, Overlay metrology or Scatterometry Ellipsometry. Defect inspection is widely
considered the foremost of all semiconductor process steps. There are various semiconductor defect types, such
as design-defects, micro-bridges, etch-defects, overlay defects, TARC-defects, EUV defects, and particle-type
defects. The semiconductor defect inspection process throughout the full lifetime of the wafer is always the
slowest part of the total lifetime of an individual wafer. Next-Generation Inspection tools have been proposed
for an alternative to defect inspection SEM images performed for resist stack. A complete metrology and defect
detection framework has been considered the leading solution for EUVL seminal production and also for any
existing alternative complex lithography system in semiconductor manufacturing. Metaphysically relevant
methods developed herein intensively involved the EUV process and the physical basis of the method itself and
the prior SEM image preparation on size binary conversions.

2. Fundamentals of Machine Learning

Machine Learning (ML) is no longer a trend; it has evolved into an established field that has influenced every
aspect of our lives. The basic principle of hardwares, such as processors and memories, has also evolved,
enabling faster computation and larger memories, as well as leveraging these technologies in the cloud for even
more robust facilities. These advances have enabled more complex algorithms and specifically the deep
learning family, which has become the go-to solution for many problems. However, the complexity of these
new setups and the black-box like nature of models obtained make them ineligible for many applications or, at
the very least, they challenge their claims.

One such application area is the industry, where systems or models will be audited or are expected to provide
an explanation for their decisions. Defect detection, which is the task of identifying any anomalies in a product,
is a cornerstone procedure for many industries, because it indicates that the product doesn't satisfy quality
standards. A specific setting is the automotive industry, which has very high safety standards; defects or cracks
may not be visible to the naked eye and hence require a tool to identify them. At this point, such establishments
often employ an expert to assess the condition, which requires extensive experience and time. Machine learning
naturally found its way into this task, and nowadays many successful models exist; however, most of these are
of the black-box type, and often there is a need to 'open this box'. This research tries to bridge this gap: the goal
is to create a transparent and reliable model that can detect tiny imperfections in the manufacturing process
and accurately pinpoint the exact pixels that led to its decision. Ultimately, the defect identification process will
be significantly more accessible to potential consumers.

The combination of shrinking technology nodes, mounting process complexities and skyrocketing costs takes
the breath away of those active in semiconductor and lithography. Pioneer companies, research institutes and
universities worldwide face many work and enormous challenges to remain on the bleeding edge of technology
and research. One of these bleeding edge and challenging research fields is high-NA EUV. Anyway, unremitted
efforts in combination with pioneer approaches and novel methodologies will pave the way to satisfactory
results and findings. In this context, it is felt to bring the on-going potential research and development closer
to a broader audience by the guest editor of this special issue Sampling. The selected contributions cover a wide
range of topics around the scope of Intelligent (Machine Learning driven and other) Metrology, Inspection and
Defect Detection for better micro-exposure-machines (METROLOGY DEVIL) and offer a closer look at
substantial and cutting-edge recent results. The guest editors sincerely hope that this special issue will be
insightful, foster academic exchange and interaction between the expert teams behind the contribution and the
wider community of researchers, professionals, engineers and asset managers.
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2.1. Supervised Learning

Machine learning (ML) based metrology applications have gained a lot of interest in semiconductor
manufacturing in recent years. This is due to the need for more advanced metrology solutions for industry as
the technology nodes scale down. The geometric dimensions are reduced, pushing process tolerances to the
edge of the processing window. It is crucial to control these dimensions within very tight tolerances to guarantee
the functionality of the electronic devices. The optical CD-SEMs are the engines for the most advanced
metrology in high volume manufacturing (HVM). Deep learning, which is a subset of machine learning, can be
used to classify patterns within data, where the learning is achieved through artificial neural networks.
Application of deep learning to metrology and defectivity of extremely low patterned wafers is of particular
interest for semiconductor manufacturing since it is very hard to develop basic algorithms. The first approach
to achieve a high quality model is to have a large and versatile labelled database. Both has been achieved
through the organization of a standardization and the manufacturing of the first dedicated test wafers. Initially
an automated ML recipe for GLM has been created using random forest classifiers running on the environment.
This first experiment showed that at a single measurement condition there was a correlation between the
critical dimension (CD) of the feature and the output response of the model. Taking into consideration all Seven
(7) output responses, since they give linear or non-linear responses due to the defects, the analysis could give
false positives results with the metrology instrument. Nevertheless, by the tune of the model a recipe with very
few false positives. In order to enhance the model sensitivity, the measured data were post-process and the peak
of the Fourier power spectrum. It has been found that those malicious defects show some unique feature in
their CD signature that wasn’t observable from their images. Further works suggest to research machine
learning (ML) and deep learning (DL) solutions for metrology measurements and defect detection in patterned
wafers as a promising first approach involving a ML tool dedicated to SEM metrology.

2.2, Unsupervised Learning

Extreme ultraviolet lithography (EUVL) is the main candidate for the post-3 nm technology node of the
semiconductor industry. Its implementation results in fundamental changes that have extended its reach across
the semiconductor manufacturing process. Such fundamental changes include the exposure of EUVL machines,
novel optical materials, multilayer ARCs for all fixed layers, aggressive Shrinks for advanced nodes, new etch
and deposition schemes, low-k spacer deposition, and integration for a multi-patterned back-end-of- line
(BEOL). This transformation has introduced new challenges in quality control (QC), defectivity measurement,
OPC modeling, OPC verification, metrology precision, new process optimization, and other engineering tasks
across many disciplines to ensure manufacturing robustness and yield learning. Among the new imaging nodes
of the production process, one of the most severe nodes is 0.33NA and 0.55-0.33NA high- volume EUV
imaging, which is expected to emerge for advanced BEOL layers around 2023. Additionally, from 2021, the first
0.55NA EUVL layers will be produced. However, no off-measurement solutions have been matured in the
community at the time of this writing. In a period of 10+ years, traditional metrology capabilities have evolved to
address standard absorption-based CD metrology in thin-films of Si as used in the earlier imaging layers.
Processes are now captured with x-y-z dimensions, line-edge roughness (LER), edge placement error (EPE),
and Finnish planarity among other challenges. SEM-based metrology development of the metrology process
has been intractable, but there are recent breakthroughs. Even where practical solutions exist, new challenges
are emerging, with critical dimension uniformity (CDU) metrology and model-based scatterometry moving
from easy trigrams to gratings and Fins and later to novel designs with unconventional 2D shapes and guided-
wave measurements. At the same time, engineering’s needs are also extending to under-layers of the same
optical stack at different nodes requiring special, slower, or multi-stage metrology tools. Attention to defects is
correlated with the steadily lowering shot noise per image that is yielding tremendous yield gains in EUV defect
source control strategies, making the inherent defect signal-to-noise ratio worse for all but the largest class
defects. Industrial mature solutions for detection and classification rely on defect lab reviewers to produce
golden references, followed by full wafer reviews on the same class and defect lab samples on all, combined
with integrated optical designs. Advanced control with HS or HSB is still under-implemented and offers
imperfect validation. EU's transformative adoption coincides with the overarching control-IT paradigm shift.
Growing process complexity and economic needs have increased the acceptance of machine learning for tasks
with a less clear engineering solution. In parallel, main players are staking proprietary control IT data analytics
solutions for their equipment and processes, leading to a potential supply chain power struggle with IP
considerations being a significant concern. Seml40 semi-supervised Machine learning Based control
Framework for precision improvement in semiconductor manufacturing produced seminal architectures and
proof of concepts for unsupervised, semi-unsupervised metal-mode, and benchmode training.
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Fig 2: Unsupervised Meta-Learning

3. Applications of Machine Learning in Semiconductor Manufacturing

Progress in semiconductor technology has continued to evolve at a brisk pace, increasing the complexity of
semiconductor design and manufacturing processes. High-performance and precision in semiconductor device
fabrication necessitate the need for complex and finely tuned manufacturing processes. Over the previous
decades, there has been remarkable progress in the development of novel metrology instruments and defect-
inspection tools for guiding the inspection, measurement, and control of the lithographic process. The
introduction of machine learning in industrial and academic sectors has revolutionized various fields of
technology to a great extent, such as semiconductor manufacturing, including its metrology and materials
sciences. In this arena, machine learning provides diverse tools and techniques for the development of various
state-of-the-art applications encompassed in a smart manufacturing environment. Hence, this review aims to
provide an insight into the development of machine learning-driven methods concerning metrology and defect
detection in extreme ultraviolet lithography.

Engineers, material scientists, and physicists comprehensively use machine learning models for various causes
related to metrology. The predictions of overlay shifts on image recognition techniques yield more accurate
results compared to the traditional machine learning workflow, primarily at advanced micro devices. In
situations that involve nanoengineering, the neuro fuzzy method is used for inspecting and evaluating the
critical dimensions of semiconductors. The self-learning method is employed for minimizing the roughness in
GaN films exploiting spectrophotometric techniques. A hybrid coating film evaluation method is introduced,
respecting the antecedent relation, which might decrease the cycle time of evaluation. Microstructure
prediction of the coating layer is categorized as a structured problem. Machine learning models such as LSTM,
Conv 1D, and Seq2Seq are supported. According to the simulations with sequence effects, the predictive
performance is enhanced for greater accuracy.

Process Tool
Matching > - Classification

ML-based
Root-Cause
@ Analysis

Fig 3: Al in Semiconductor Manufacturing
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3.1. Defect Detection in Lithography

Introduction of Machine Learning Paradigm in Semiconductor Manufacturing. Continuous progression of
Moore’s domain growing is posing new challenges in the field of metrology and defect inspection for the
semiconductor industry. This has led the industry towards the realization of High-Numerical Aperture Extreme
Ultraviolet Lithography (High-NA EUV) whereby the semiconductors envision to eliminate the complex multi-
patterning strategy and extend the lifetime of their saturated nodes. With the introduction of High-NA systems,
one of the primary hurdles in implementing High-NA EUV in High Volume Manufacturing (HVM) is its low
depth of focus, i.e., at best £50 nm. As a consequence, the metrology and defect inspection of High-NA EUV
must be primarily focused on the device under manufacturing. Experimental combinations of ultra-thin resist
materials with novel underlayers and hard masks are furthered making the device bottom-signal detectability
a challenge due to high spatial frequencies and reduced Signal-to-Noise Ratio (SNR). It is, therefore, not
feasible to maintain a wider range of drastically different reference signal depths as known and force a change
in the detection strategy.

The use of a rule-based application to detect signal over a range of depths, primarily intended for the Zero layer,
is not transferred to the bottom patterned layer and is contingent on the devil of restrictions. Apart from device
bottom-signal detectability, localized post-etch concentration can be monitored using an etch-maintaining
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quality metric. In recent years, vision-based machine learning (ML) algorithms have emerged as an effective
solution for image-based semiconductor defect inspection. These machines learn to automatically detect
various subtle defects in the patterned device after a brief labeled training period, with a primary focus on
defects that can be reliably detected as anomalies. The compactness and reliability of this defect expected of
detected emulate instances presented a unique challenge for deep neural networks, unfitting major advances
in computer vision. The algorithms would be further tasked with efficiently generalizing their task to a novel
defective pattern and device type. Additionally, upstream resources must also be dedicated to preparing,
understanding, and selecting ideal input data and accompanying semantic controls for defect detection model
trialing and validation. Highly variable patterned devices resulting in variable defect appearance are likely
locally insurmountable lower breakdown capability of prevalent pre- fullerene-based materials.

3.2. Metrology and Inspection

Emission power decreases proportionally to the square with the source-wafer distance, both object-feature and
source-mask optimization (OPC-SMO) solutions from masks will result in a decrease in image quality.
Furthermore, the fabrication of the optical masks used for high-NA EUV is exceptionally challenging making
both OPC-SMO solutions much more intricate particularly since the smaller feature sizes are accompanied by
an increasing complexity and significant roughness. To ensure the reduction of this complexity over the
transmission of masks to and from the wafer, the concept of Inverse Lithography Techniques (ILT) emerged
and there was a leapfrog shift from conventional masks to the much more complicated free-form phase masks.
By providing 3D broadband imaging capabilities in the EUV range the deployment of NIL is about to become
veritable given the increasing demand for high-resolution structures. Advanced machines will remain regarded
as the capital-intensive workhorses of the industry enabling the right BW (Budgeted Wafer Cost) ; however,
this would result in beneficial displacement of large weights in the industry. By offering inverted fab tools as a
service would free up auditing practices of the BW and the increased capacity of fab tools where the biomedical
sector could be leased during off-peak consumption timeblock though it needs to be emphasized that
semiconductors will likely demand the time going to health applications and biotechnology as major
competition for post-national projects are expected to compete for the resulting surge of extra funding.

Equ 2: Regression for Metrology (Dimensional Measurements)
Where:

¢ i is the predicted measurement (e.g., line width, overlay error).
e W is the regression weight vector learned during training.
yﬂ f— W . F — b ¢ F is the feature vector extracted from the image.

¢ b is the bias term.

4. EUV Lithography and its Challenges

1. INTRODUCTION Since the invention of the integrated circuit, the far-sighted prediction of Gordon E. Moore
in 1965 — that the number of transistors on a semiconductor chip would double approximately biennially and
lead to significant reductions in their cost — generally proved to be precise for the next half century. Although
the indefinite extension of this notion was already expected and explicitly stated later, it now appears that the
achievable improvements in the technology aspect of Moore’s law may be tapering off as the cost continues to
rise. As the critical dimensions of fabricated devices shrink in the order of a few nanometres, it becomes
increasingly challenging to ensure the bottom-up continuous validity of the rule, considering that it presents a
simplified way of scaling semiconductors, leading to the continuous reduction of their geometrical parameters,
primarily the gate length.

The creation of the gate is generally orchestrated by the use of optical lithography, utilizing the differentiating
properties of light in a process reminiscent of photography, to assist in the definition of pre-designed circuits
on the small surface of a wafer. Over the years, it evolved from the UV to the Visible part of the spectrum, from
a wavelength of 436 nm down to 157 nm, Hf quadro-pole illumination, and off-axis illumination synthesizing
one photomask from a complex Optical Proximity Correction (OPC) process. Research continues to decrease
the wavelength to 13.5nm with the Extremely Ultra Violet (EUV) lithography, an entirely new kind of imaging,
with extremely low depths of focus, emphasizing the compatible processing of the resist materials.

4.1. Principle of EUV Lithography

Extreme Ultraviolet (EUV) lithography is the next-generation lithography technology used in advanced
semiconductor manufacturing. One advantage of EUV lithography is to simplify the complex process of multi-
patterning lithography used before by the Multiple Patterning Lithography with EUV lithography. However,
EUV lithography has a serious problem with a limited depth of focus (DoF), which is the focus-exposure margin
on a wafer. To prepare for the introduction of EUV lithography into a semiconductor mass production line, it
is required to monitor the critical dimension (CD) values after the lithography process and to detect the defects
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with these values. Through a resist process, CD-Semiconductor Critical Dimension Scanning Electron
Microscope (CD-SEM) measurements have been performed to control the CD after the lithography process. On
the other hand, the CD-SEM is also used as one of the inspection tools to detect defects after the lithography
process.

As conventional ArF immersion lithography reached its physical limitation around the 7nm technology node,
the industry urgently needed a breakthrough solution to maintain Moore's law. EUV lithography was thus
adopted as this breakthrough technology due to the unique properties of EUV light. Lithography and thin film
coatings are major modules that will potentially strongly impact process development, especially when brand-
new lithography equipment and technology is introduced. In a lithography module with a numerical aperture
(NA) of 0.33, the defectivity issue had more room for improvement. With the arrival of high-NA EUV’s 0.55
generation, EUV lithography might become the first module at the upcoming manufacturing nodes requiring
immediate attention in order to sustain the edge-yield in time. In such a case, cutting-edge defect sorting is
assumed to be on the consumer end implementing great efforts in defect inspection during the “new” process
development. Among these tools, the CD-SEM is one of the most routinely useful metrology tools used to
monitor processes in semiconductor fabrication that is widely deployed for a wide range of applications . At
present, the emergence of machine learning techniques is rapidly expanding the opportunities to use a CD-
SEM, which is discussed hereby.

Grants transmitted the practical guidance for strategic material selection for each UV radiation component.
Developed MRI-based coolant flow-sensors and monitor in the significant chilldown of an EUVL crimp. A
solution for non-destructive classification, further a massive paper on EUV Oil. Sites exhibit improved
reflectivity through maintenance and Contactless Measurement.
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Fig 4: EUV Lithography

4.2. Challenges in EUV Lithography

The introduction of High Numerical Aperture EUVL is considered to be the most complex optical technology
progress in semiconductor manufacturing lithography history, which will enable sub-5 nm pattern printing.
These 5nm and 3nm technology nodes need the production of the High-NA optics. It brings a lot of installation
and integration challenges for metrology and equipment function, while whose necessary dimension reaches
the limit of the current process capability. Currently, only the TEL CIM has considered CD metrology and
imaging technology.

EUVL is a high-resolution, high sensitive, high compact dimension production technology compared with
optical lithography. The small illumination and traditional inscanner interferometer system design, EUVL
random defect signal is indirection and weak. Increased the call for a large number of controllably designed
pattern band defects, which creates a great challenge to the contemporary ACD/LCD/E-Beam design.
ChipMOS Partners with a company, TEL together with others work heartily on an approach to use Machine
learning models for simulation and analysis of high-NA issues of Metrology, Lithography and Process. EUVL
has high intricateness on reflective masks, pellicles, OOC. SEMI Cyber Physical Models continue to enhance
and aggregate value through EUV components and storage knowledge, data, and rules advice. NPR has taken
the initiative to make insightful data strategy recommendations to the industry. EUV Manufacturing is
designed with expanded AEFRs. S-TAC has driven productivity enhancement more than 25%. EUVL
Manufacturing System-level Fault detection Efforts in vendors have attracted insight from a cross section of
suppliers. EUV Contamination continues to be in the focus of APMI, preliminary agreement on general
principles for pre-competitive collaborative research. EUVL-based high-resolution NIL standard logic devices
are in strong demand. EUVL gained engagement and constructed a residue layer protocol in partnership with
a provider. EUVL production from a series of naked DMs implanted vacuum systems and receive hanging-
through-out-qualification beyond-wetz lifetime testing.
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5. Integration of Machine Learning in EUV Lithography

The semiconductor manufacturing industry is in the midst of evaluating research on the introduction of High-
NA EUV for potential pitch reduction at future nodes. The resulting interest in high-NA EUV experiments and
simulations motivates a study of whether MOST is able to model the relevant process window and image
ordering effects even in the presence of these new complexities. MOST is used in a hybrid scheme that combines
first principle modeling with neural network-derived image classifiers for the first time, with a high degree of
accuracy. Lithography remains a fundamental and resource-intensive step in the manufacture of integrated
circuits, consuming expensive lithography systems which require large computational overhead in
computational lithography modeling. In recent years, deep learning has been introduced into the field of
lithography modeling, and image-to-image GANs were used for an optical proximity correction in pattern
lithography, which achieved a two times increase in computational timeliness compared to rigorous
simulations. However, the image-to-image black box mapping transforms even moderately simple optical
systems into complex mathematical objects simply due to the large number of pixels that compose the high-
resolution images.

5.1. Data Preprocessing and Feature Engineering

Manufacturing advanced computer chips essential for artificial intelligence and cloud services requires new
technologies due to the challenges posed by Extreme Ultraviolet Lithography. Machine learning driven
Metrology and Defect Detection can improve the accuracy and speed of the semiconductor wafer’s quality
verification process by identifying and classifying under 100 nm nanometer size retrospect images using Deep
Learning. A novel ML-MDD-ADCNN, FCSMNet, and SBDE are developed to enable deep learning models for
mask overlay and small defects in the wafer’s die images. FCSMNet extracts the smallest under-etched feature
size by integrating the fabricated Features of SEM images and modeling their maximum values. SBDE improves
defect image generation by converting SEM to Defect Edge based on shape-based methods. This DE would be
valuable for advanced ML defect detection models and optical shadow simulations of the defect position. A new
transfer learning encoder network architecture, named FCSMNet, is proposed and derived from the
experimental features of any SEM images. The maximum values of the modeling parameters are integrated
into the trained encoder learning. To be tested with masks that have deliberately created various artificial
defects. The SEM image dataset and the modeling framework are provided, which can be investigated and used
to search for research ideas with advanced machine learning methods in CD metrology or image processing.
The shape-based defect characterization approach, named SBDE, is presented. It extracts the shape-based
Defect Edge from the detected defected area on the mask SEM image. The shape score is improved to produce
defect DE that is SWafer-defects mapping result.
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Fig 5: Semiconductor Process Anomaly Detection and Prediction

5.2. Model Selection and Training

An ADC framework is proposed that cascades Super-Resolution (SR) alongside conventional detection tasks.
This work presents an exhaustive study of effective SR-RR-SD design constraints and SR-architecture
combinations to maximize performance gains with minimal computational complexity overhead. Furthermore,
an asymmetric decimation method is utilized to generate readily upscale images and enable a higher total
mPPA. A novel scale-invariant loss function is designed to mitigate current shortcomings of training the model
across multi-resolutions. Experimentation on privately owned datasets demonstrates that SEMI-SuperYOLO-
NAS achieves the desired objectives. Identification of nano-scale defects within patterned wafers is critical for
maintaining wafer yield in semiconductor manufacturing. As dimensions shrink in line with Moore’s law,
defects within these structures can be reduced to below the Rayleigh resolution limit for visible light, and are
thus difficult to detect. Machine-learning based defect detection systems have been proposed, but are unable
to upscale SEM images and are therefore incompatible with sensitivity requirements. A novel defect detection
framework, SEMI-SuperYOLO-NAS, is proposed, integrating Super-Resolution (SR) and defect detection
tasks. Extensive experimentation shows enhanced defect detection capability of SEMI-SuperYOLO-NAS
compared to the state-of-the-art SuperYOLO-NAS and existing machine learning methods. Critically, the
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model is shown to achieve this in a scale-invariant manner, enabling the only machine-learning-compliant
nano-scale semiconductor defect detection model currently in existence.

Equ 3: Defect Prediction (Time-Series for Process Control)
Where:

e [, is the defect count or rate at time £.
s o1, P9, ..., ¢, are the model coefficients.

Dy =¢1Dy y+ oDy o+ -+ 0Dy + & ® ¢ is the error term (residual noise).

6. Case Studies and Success Stories

Machine Learning (ML) driven metrology and defect detection in Extreme Ultraviolet (EUV) lithography is one
ofthe top ten emerging and groundbreaking technologies that will lead to a paradigm shift in the semiconductor
industry. The field presents seven case studies and success stories on the application of vision- based ML
algorithms in different semiconductor manufacturing processes for the first time, including ML applied in duo-
tone development-based patterning, Overlapping Window Open Patterning, Metal Direct Patterning, Chemical
Mechanical Planarization/Bevel-CMP, MIM Capacitor Formation, Through Silicon Via RDL Vias, and ML
assisted color filter defect detection for display manufacturing. The presented case studies cover both vision-
based anomaly detection and segmentation-based adult sampling detection frameworks with successful defect
detection on images and Failure Analysis images generated from various processes in semiconductor and
display manufacturing. These stories from the world’s leading semiconductor foundry provide a comprehensive
reference and valuable insights, practical suggestions, and considerations. Fifteen papers on deep learning for
image-based semiconductor engineering and manufacturing also accompany this submission for double-blind
reviews.

The semiconductor industry is increasingly embracing High-NA EUV technology, which is expected to offer
superior Resolution, Depth of Focus (DoF) and Low Contrast Sensitivity (CLS) effects, mainly at 0.55 NA in
development. However, a primary limitation in implementing High-NA EUV technology in High Volume
Manufacturing (HVM) is the lower DoF of developed images, which is negating all the add-on advantages of
High-NA EUV. To face the limitations of the new EUV technology, it is proposed to implement free standing
designs in etch-like setup.
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6.1. Industry Applications

Compared to other novel tool and material developments, the introduction of EUV technology was a paradigm
shift in semiconductor manufacturing. The EUVL supports ultra-small design rules of the order of a few nm
that are impossible with existing ArF immersion multi patterning. Initially dedicated techniques and tools used
to realize EUVL were in a particular development system particularly designed for EUV, as well as reflective
masks, reflective optics, specific source wavelength and air-free EUV transparency. With the introduction of
high-power laser plasma technology, several companies matured EUV technology, and several players of the
semiconductor industry and suppliers have anticipated and invested in materials and equipment development.
Currently, EUV exposures reach mass production and with high throughput scanner, the increase of process
speeds is foreseen, still maintaining overlay and critical dimension (CD) tight specifications. Following
continuous shrinkage of design rule, new paradigms are investigated for metrology and defect management in
the semiconductor manufacturing industry. These include more regular design and corresponding self-
assembly, stochastic and sandwich materials and processes.
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6.2. Research Initiatives

Ultra-small defects and non-uniform processes in multiple nano-agents patterning pose challenging machine
learning problems for metrology and defect detection in semiconductor manufacturing. Inadequate machine
learning provides an inaccurate estimation of the variables, which results in uncertain control decisions. Due
to the wide variation in alteration characteristics and the diversity of systems, there is a need for a versatile
machine learning framework in various experimental settings. This study proposes a new machine learning
approach that integrates deep reinforcement learning with variational inference — Goal-conditioned Scalable
Hamiltonian Double Q-Networks. A scalable Bayesian variational neural network approximates the posterior
predictive distribution of the framework’s machine learning to obtain a distribution on the image estimated
quantity of interest. To maximize the effectiveness of machine learning, the integration of multiple nano-agents
patterning is controlled in the evolution of the SEM MsMP. To enhance the sample efficiency of meta-training,
the machine learning agent aims to develop a well-informed exploitation policy over multiple experimental
conditions by leveraging deep reinforcement learning techniques. The introduction of a model trust region
ensures robust and reliable machine learning.

Current research initiatives in machine learning-driven metrology and defect detection in semiconductor
manufacturing are dominated by supervised learning or semi-supervised learning methods. However, these
methods impose strict demands for a regular disposition of data in both space and time. Any deviation can
induce biased learning and inhibit generalization, due to the complexity of data in the advanced semiconductor
manufacturing process. This paper introduces a novel paradigm for using Generative Adversarial Networks to
imitate multi-domain and multi-modal data to the regular samples for machine learning-based metrology and
defect detection. Furthermore, this paper provides a prototypical design in the context of extreme ultraviolet
lithography, a promising technology for next-generation advanced nodes in semiconductor manufacturing.
Finally, a comparative study conducted in both defectivity and overlay control demonstrates that the
application of this synthetic approach can guarantee substantial gain in both detection and control accuracy.

7. Conclusion

UShrinc-Net is introduced, the successful application of Deep-Learning based machine learning driven
metrology and defect detection into mask-level and wafer-level Extreme Ultraviolet Lithography for the
semiconductor manufacturing. As the resolution of the patterns in the semiconductor devices, the
corresponding photomask patterns have shrunk during the last decade but the number of the layers has
continuously increased. The extension of the EUVL from the wafer-level to mask-level is the enabler of
overcoming them. A brief description on the principle of the EUV is given that is followed by the introduction
of the developed system, named “UShrinc-Net”. Implementation of the UShrinc-Net greatly helps the fine-
tuning of the scanner tools after the baseline exposure conditions are set, and it considerably uncovers the
possible loss of the best-pattern image quality at the printing-time by monitoring many possible causes of
degradation, including fundamental changes in the amplitude of their baseline conditions. The device
dimensions in the state-of-art semiconductor manufacturing have been aggressively shrunk over the years of
development as the semiconductor industry is the foundation of the modern digital world. Since the early
2010s, the optical/wavelength lithography methods have become the direct replacement of the electron-beam
lithography in semiconductor manufacturing and the patterns formed by the optical lithography have shrunk
accordingly. This brings severe difficulties as the patterns of the photomask, which is the reduction of the actual
device patterns traditionally made by the mask makers, are in the peri-nanometer range. Additionally, the
number of device layers that are formed by lithography deteriorates significantly the patterning quality of the
scanner tools along with the enhancement of the process window. A possible solution to these problems is to
extend the EUV from the wafer to the mask side of the lithography, hence the patterns of the mask and the
wafer are subject to the EUV illumination, the same light source. Thereby an important system, “UShrinc-Net”
is introduced that encompasses both EUV mask-level and EUV wafer-level lithography, which are actually, up
to now, two distinct lithography worlds, and provides the opportunity for the real-time monitoring of the
transmission and the occurrence of the defects in the same methodology.
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