Educational Administration: Theory and Practice

2024 30(4), 11134-11144 ISSN: 2148-2403

https://kuey.net/

Educational Administration Theory and Practice

Research Article

Leveraging Predictive Analytics In Management Information Systems To Enhance Supply Chain Resilience And Mitigate Economic Disruptions

Mohammad Abdul Goffer^{1*}, Partha Chakraborty², Habiba Rahman³, Clinton Ronjon Barikdar⁴, Niropam Das⁵, Sazzat Hossain⁶, Md Ekrim Hossin⁷

¹School of Business, International American University, Los Angeles, CA 90010, USA, Email: mdabdulgoffer1991@gmail.com
²School of Business, International American University, Los Angeles, CA 90010, USA Email: parthachk64@gmail.com
³School of Business, International American University, Los Angeles, CA 90010, USA Email: barikdarclinton@gmail.com
⁵School of Business, International American University, Los Angeles, CA 90010, USA Email: miropomdas124@gmail.com
⁶School of Business, International American University, Los Angeles, CA 90010, USA Email: <a href="mailto:mail

Citation: Mohammad Abdul Goffer, et al (2024), Leveraging Predictive Analytics In Management Information Systems To Enhance Supply Chain Resilience And Mitigate Economic Disruptions, Educational Administration: Theory and Practice, 30(4) 11134-11144 Doi: 10.53555/kuey.v30i4.9641

ARTICLE INFO

ABSTRACT

The role of management information systems is to act as an enabler for incorporating predictive analytics as a support system in the supply chain. There is now an emphasis on supply chain management. Predictive analytics particularly on the supply chain vulnerability due to the various economic instabilities such as those that result from global calamities, natural disasters and fluctuations in the markets. The integration of two fields of predictive analytics and Management Information Systems. Their functions in managing risks and facilitating flexibility in SCM are discussed. The study uses the case study analysis as well as model simulation. Supply chain data from around the world are processed with complex tools of predictive analytics such as time series analysis, regression analysis, and machine learning. Management Information Systems platforms are developed with an interface that allows data to be fed in real-time and for real-time decision-making. The results indicate that when the Management Information Systems has embedded the predictive analytics. The supply chain vulnerability is significantly reduced and resources effectively be successfully marshalled. The organizations that have adopted this approach seem to have attained higher operational efficiency, less economic loss and the ability to rebound to disruptions. The relevance of using predictive analysis within Management Information Systems as a tactical approach to enhancing strong and flexible supply chain functionality is critical in coping with the complexity of the current global economic environment.

Keywords: Predictive Analytics, Management Information Systems, Supply Chain Resilience, Economic Disruptions, Data-Driven Decision-Making, Machine Learning in Supply Chain

INTRODUCTION

Supply chain management systems remain strategic in operation because of the integration of the global economy, as indicated by Christopher (2016). Many factors that characterize the contemporary economic environment, such as volatility and uncertainty, create formidable barriers to optimal supply chain management (Birkie et al., 2017). Geopolitical risks, climate change, infectious diseases, price volatility and technology disruptions have exposed different weaknesses in SCM that result in time delays, cost escalation (Ivanov and Dolgui, 2021). The COVID-19 there are disruptions in the production process, which affected the supply chain system due to disruptions in transportation and distribution networks (Gupta et al., 2019). The

^{*}Corresponding Author: Mohammad Abdul Goffer

^{*}School of Business, International American University, Los Angeles, CA 90010, USA Email:<u>mdabdulgoffer1991@gmail.com</u>

climate change which has compounded risks of natural disasters (Sarkis, 2020). These are concerns of financial volatility that result in such things as inflation and fluctuating prices of essential commodities, which all add to the challenges of continuing with operations (Ivanov et al., 2019). Supply chain management is not about building resilience for competitive edge but for the sheer survival and development of the business. A supply chain that is robust ready for disruptions before they occur, effectively manage disruptions as they occur and recover from disruptions after they occur so as to continue operations and meet customer expectations (Sincorá, et al., 2018). This resilience necessitates the use of contemporary enablers such as predictive analytics to augment conventional supply chain management models into positive and innovative systems (Jeble et al., 2020). Management Information Systems have the critical function of incorporating the use of predictive analytics and BI tools into the supply chain processes. The real-time data processing, failure analysis and forecasting. Management Information Systems increases organizational resilience, resource efficiency and adaptive potential (Nimmagadda, 2020). It is clear that both technology and strategy are key for the understanding of the current complex economic environment and sustainable supply chain' management.

Problem Statement:

Supply chains are functional mechanisms that facilitate the transfer of goods, services and information across the economies. These systems are becoming more sensitive to disruptions emanating from economic instabilities such as economic crises globally, disasters, geopolitical tensions, fluctuations, and others (Mani et al., 2017). The tendency toward schedule Predictive Analytics and delays in manufacturing and delivery, shortages of resources, escalation of costs, and overall organizational suboptimality (Dubey et al., 2021). The global disruptions, the COVID-19 Predictive Analytics revealed how vulnerable supply chains are and disrupted manufacturing, transportation and distribution processes (Celestin and Vanitha,2015). Natural disasters such as hurricanes, earthquakes and floods significantly affect regional supply chain nodal points, causing unplanned disruptions and higher recovery outlay (Singh and Singh, 2019). The complexity and integration of the supply chain systems in the world today make the effects of these disruptions have a knock-on effect on world economies (Bag et al., 2021).

The existing typical supply chain management frameworks integrate exclusively reactive concepts, which are unable to prevent or overcome shock (Ralston and Blackhurst, 2020). This reactive nature means that firms make decisions slowly, they have a poor way of utilizing resources, and they are unable to bounce back from setbacks. There is still no applied real-time data processing and prediction in many systems, that is why the supply chain remains frail to economic and operative risks (Nimmagadda, 2021). The global markets become increasingly volatile with regard to their performance. It becomes imperative to develop strategies to improve the robustness of supply chains. Management information systems provide an ideal solution for predictive analytics integration through real-time monitoring of disrupted supply chain events and forecasting of disruptions with integrated decision-making support (Mageto, 2021).

Role of Predictive Analytics and Management Information Systems:

The application of predictive analytics to management information systems has lately become the key process toward managing threats and improving the decision-making process at the operational level of supply chain management (Shmueli and Koppius, 2011). Business intelligence used in predictive analytic systems that use machine learning, statistical modeling, and data mining allows an organization to Predictive Analytics possible disruptions and Predictive Analytics that may influence its supply chain (Lin et al., 2017). Predictive Analytics into the Management Information Systems platforms, a business capture large volume of real-time data, evaluate risk situations, and build valuable insights. Another advantage of applying predictive analytics as Predictive Analytics of Management Information Systems is that it gives a valuable opportunity to predict and control supply chain risks (Dubey et al., 2018).

There is a possibility to predict possible disruptions and risks by evaluating historical evidence and macro-environmental trends, weather conditions, and politics, etc. Such analysis enables planning actions of organizations, resource redistribution, changes of inventories and diversification of supplies to reduce effects of unexpected circumstances (Jeble et al., 2018). The integration helps in the decision-making process since it gives visibility of processes and valuable data instantaneously. Management Information Systems platforms tools for predictive analytics help supply chain managers observe KPIs. Contingent shipments and improve logistics activities in real time high-level dashboards along with data visualization bring better ways of perceiving trends and inefficiencies by their stakeholders (Breuker et al., 2016).

Predictive analytics helps with the generation of various risk model scenarios, which let the organizations determine the merits and demerits of any risk avoidance strategies. This Predictive Analytics is essential when managing supply chain risks because it creates and hones contingency strategies in advance of disruptions (Brynjolfsson et al., 2021). The several issues emerge when the adoption of predictive analytics is considered for integration with Management Information System, technological infrastructure and the skill set of the personnel needed to analyze and interpret the complex analytical results (Waller al., 2013). The organizations that manage to achieve this integration are in better standing to continue operating in the currently challenging economic environment and maintain competitiveness.

Research Objectives:

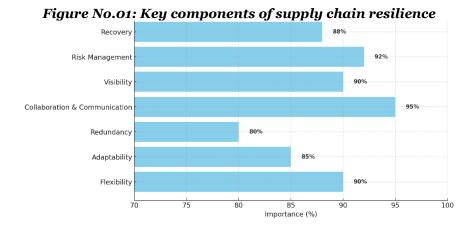
- Investigate how Management Information Systems enhances operational efficiency in supply chains.
- Assess the effectiveness of predictive analytics in forecasting supply chain disruptions.
- Evaluate the role of real-time data in improving supply chain decision-making.
- Examine the synergy between predictive analytics and Management Information Systems in optimizing resource allocation.
- Identify technological and organizational challenges in adopting predictive analytics in supply chains.
- Explore case studies showcasing successful integration of predictive analytics and Management Information Systems.
- Investigate the potential of machine learning in predictive analytics for supply chains.
- Assess the influence of predictive analytics on reducing economic losses in supply chains.
- Develop strategies to overcome barriers in implementing Management Information Systems with predictive analytics.

Literature Review

Overview of Supply Chain Resilience:

Supply chain resilience is concerned with the ability of a supply chain to Predictive Analytics re for disruptions and absorb the Predictive Analytics with a view of reducing the consequential effects on operations, customers, and the business. The global economy of the present decades adds flexibility criteria as crucial to supply chain management due to various potential threats besides its efficiency, such as storms, political issues, lack of raw materials, crises and other unpredictable situations (Ouabouch, 2015). Supply chain resilience this is the ability of the respective chain to face manageable difficulties, effectively cope with them and continue performing operations while managing relative performance. It is risks, design operations flexibility and have designs for improvisation to allow business to go on as planned (Floetgen et al., 2021).

Supply chain response Predictive Analytics city is the ability of a supply chain to recover and possibly even enhance its operation after a disruption has occurred. This includes preventing risk occurrence as well as having predisposed systems that enable fast risk response. Supply chain resilience explained based on the Predictive Analytics that characterize supply chain Predictive Analytics to handle disruption as outlined next (Negri, 2016). The ability of the supply chain to adapt to operations, processes plan to respond to certain conditions. This includes such strategies as changing production timetables, changing the supply base, and accommodating changes in the supply chain.


Technological adaptation which entails automating an organization's procedures, applying artificial intelligence, and integrating the use of analytics in an organization, assists organizations to manage change more proficiently in cases of fluctuating market needs or supply chain issues (Sandhya and Chatterjee, 2021). Redundancy is a concept is vital supply resources or Predictive Analytics are provided in a duplicated form so that in case one Predictive Analytics rt of the supply chain is Management Information Systems. Predictive Analytics transport networks so that in case of disruption. The Predictive Analytics operations are not affected so much (Schaffer et al., 2021).

The final building blocks of a resilient supply chain collaboration and communication. Real-time exchange of information between internal and external Predictive Analytics is carried out well. The improving on the amount of time taken to make a Predictive Analytics decision (Raoufi et al., 2020). Social media and other digital platforms enhance working collaboration, where real-time information exchange shared through complex networks. Another component that needs to be taken into consideration when speaking about supply chain resilience is visibility (Raoufi and Mehran2020).

It defines the Predictive Analytics city to manage and to control the flow of the elements of the supply chain from one point to the other. By having a clear view of their operations, each Predictive Analytics see where there might be issues in the supply chain and then take precautions to avoid them (Belousova et al., 2021). Big data prediction systems are helpful to inform the best decisions during an interruption. Risk management is key to creating a good and robust supply chain. Risk management entails how to get to avoid or minimize risks or dangers that might occur in the process of the achievement of its Management Information Systems or in the course of its operation. Risk management tools used to rate the possible occurrences in the business environment and respond to conditions that may cause disruptions in order to continue serving its clientele (Bruneau et al., 2003).

Business continuity plans must be in place so that in the event of the situation, businesses quickly get up and running. Predictive Analytics may use supply chain mapping to know key nodes and may have contingency supply suppliers and locations to ensure the firm's flow constantly (Malloy, 2021). Supply chain resilience is not merely restorative in kind, it requires practices of flexibility, adaptability and other forms of strength to be innate to a supply chain. The business analytics and management information systems presents the Predictive Analytics of a business in real-time data analysis and decision-making, improving response to disruption (Noludwe and Komla,2020). The current global business environments make the concept of supply chain management resilience inevitable. These key components, businesses do not only react to disruptions. The application of smart technologies such as machine learning and data analytics in resilience enhance resilience

by providing new levels of resilience insights as well as making assessments of new risks much faster (Chen et al., 2021).

Predictive Analytics has been considered to be a crucial strategy in helping the firms in contemporary supply chains evaluate critical future probabilities, control variation, and manage potential risks. An important role of Predictive Analytics is in making forecasts, in Predictive Analytics demand for certain goods by means of the evaluation of Predictive Analytics sales data, customers' behavior, economic indicators, and seasonal characteristics (Waller et al., 2013). Methods such as time series forecasting and machine learning models make it easy for the businesses to predict demand, overstocking or short stocking, which in turn enhances the satisfaction of customers' orders and production schedules (Wang et al., 2016). Predictive Analytics is for inventory control, which enables Predictive Analytics to forecast the ups and downs in demand, recognize which products are not popular among customers and calculate the most appropriate stock quantities at distinct points in the supply chain.

This real-time inventory allows changes to be made to the inventory stock, thereby cutting down on carrying costs and avoiding stock-outs. Predictive Analytics it helps increase overall operational efficiency, meaning operating costs are decreased (Seuring and Gold, 2012). The risk identification that uses predictive models allows supply chain managers to respond promptly to threats, including those from suppliers, carriers and political events. With historical data, external observables and machine learning models, organizations identify signs of potential risks and prevent them from happening by reducing the amount of time and money lost (Heizer et al., 2020). These applications put emphasis on the role of predictive analytics to enhance the robustness of line supply chain likelihood.

Management Information Systems:

Predictive Analytics in Supply Chain Management:

Management Information Systems are central to supporting, improving, and enriching decision-making as well as the bringing together of information and the automation of work procedures in organizations (O'brien and Marakas,2006). Management Information Systems , decision-makers at different levels get all the relevant information at the right time. Management Information Systems allows data consolidation, where data is gathered from various Predictive Analytics systems, as well as other sources (Laudon, 2004).

This integration means decision-makers get a wide view of the organization and its operation, and thus better analysis made. Management Information Systems is always helpful to be involved in the automation of business processes, in that a lot of time is saved and effort from employees cuts down on human errors (Leidner and Kayworth, 2006). The inventory management systems usually automate processes involved in identifying stocks, acquiring them or placing orders for them, and the process of delivering them. Predictive Analytics in turn benefit the organization by improving decision-making through real-time information delivery and performance predictions (Gregor, 2006). It possible to come up with a faster response system to the challenges of the market or bargains and hitches in the operations of a business. Management Information Systems assists organizations to make better decisions faster and more effectively while at the same time running a rich and automated business environment (Ravichandran et al., 2005).

Intersection of Predictive Analytics and Management Information Systems:

A combination of predictive analytics and management information systems has a combined effect that enables efficient decision-making, allocation of resources, and obviously increases the efficiency of operations (Seuring and Kache, 2017). These technologies complement each other by leveraging the strengths of both: Predictive Analytics Predictive Analytics city for trend and Management Information Systems Predictive Analytics of data acquisition, assimilation, and its control over various units of an organization. Business analytics is a process by which an organization may apply statistical tools, machine learning and data mining strategies to understand the Predictive Analytics and the present to foresee the future (Kumar and Aithal, 2020).

Management information systems are essential systems that support an organization's data provision by offering the structure for data acquisition, storage, and distribution to those who need it. Incorporating Predictive Analytics with Management Information Systems Brings the ability to convert databases or current data into information that help in decision-making for the organizations besides helping to manage risks and plan strategically (Kache and Seuring, 2017). Supply chain Management Information Systems. It offers details such as stock availability, suppliers' performance, and status of orders on the management information system. These data points followed up by predictive analytics to provide information that may help in demand forecasting, predicting barriers to the supply chain, even correct inventory management for optimal organizational procurement and resource allocation (Rizk and Elragal, 2020). Management Information Systems platforms may be programmed to take certain actions based on predictive information, including changing from orders of inventory to production schedules. It offers Predictive Analytics strategy to organizations for decision-making. This intersection affords not only increased preciseness and the rate of decisions but also flexible and more adaptable strategies, thus enhancing the organizational absorbencies, resource utilization, and competitiveness (Zhang et al., 2021).

Gaps in Current Research:

Predictive Analytics and Management Information Systems for increasing organizational gain, the existing literature still lacks ample empirical research that relates the Predictive Analytics and Management Information Systems challenges and real-implementation. The abundance of proposed theoretical models and frameworks. Their application at the practical level, as well as the means of introducing technologies across various industries, is not given enough attention. The possibility of gains of using Predictive Analytics with Management Information Systems , including enhanced decision-making, risk supervision, and process management, among others. The planned Predictive Analytics tools are to be integrated with existing Management Information Systems. This integration proves technically complex and requires many more organizational resources, technical skills, and time to be effectively incorporated.

The complexity of these systems, especially in terms of human resources, that it requires skilled people to operate and to interpret them is another disadvantage since some industries may lack qualified data scientists. The evidence on how Predictive Analytics and Management Information Systems implemented to make a difference in real-world organizations described anecdotally most of the time. Retail manufacturing industries have embraced these technologies, but industries relating to health or administrative organs have not embraced them. It's crucial for these theoretical case studies to incorporate practical gems best practices, issues that organizations encounter when adopting solutions based on those technologies, and the failures they experience, along with the ROI of these technological integrations.

Methodology

Research Design:

The research design employs a qualitative research methodology in order to capture the extent of Predictive Analytics and Management Information Systems implementation within organizations. It is extended on analysis of the actual real-life implementation issues, other related applications, and hands-on inclusion of research data and findings. The case studies carried out to assess the various organizational examples of Predictive Analytics and Management Information Systems integration with relations to the decision-making, resource management and supply chain vulnerabilities. This qualitative investigation, holds Management Information Systems e to reveal useful information on how practice and outcomes of Predictive Analytics aligned with Management Information Systems while enhancing the knowledge base and application of both domains in the real world.

Data Collection:

The data collection for this research employs qualitative methods so as to get the gist of the application of Predictive Analytics and Management Information Systems in organizations. This study will employ moderately structured interviews with the Management Information Systems professionals, data scientists, supply chain managers, IT executives, and organizational decision-makers in organizations that have adopted or are in the process of adopting Predictive Analytics with Management Information Systems. Case reports is used Predictive Analytics to better demonstrate the practical application of Predictive Analytics and Management Information Systems integration success stories and some of the issues observed in the integration process. These case studies, documents, interviews with key stakeholders and observation of organizational practices used to provide a detailed picture of how various organizations perform this integration. Document analysis be used when studying internal reports, performance feedback any other documents that give more information on the implementation process.

Analytical Tools and Techniques:

The collected data in this research is analyzed using different qualitative analysis techniques. The study is use thematic analysis as a method of analyzing the interview transcripts and case studies with regards to Predictive Analytics and Management Information Systems integration challenges, success stories and effects.

Scope and Limitations:

The nature of this research only covers the following aspects. The use of Predictive Analytics and Management Information Systems affects organizations' decision-making processes, resource utilization and supply chain and its ability to respond and recover from disruptions. This research explores how different industries have implemented these technologies. The methodology is used Online survey and case study and documentary research to get a real feel of the Predictive Analytics and Management Information Systems integration issues. This research study has a number of limitations to its analysis and observations.

Results and Discussion

Findings from Predictive Analytics Implementation:

Table No.01: the implementation of Predictive Analytics in supply chain management, illustrating its key findings and their Predictive Analytics:

Area of Predictive Analytics	Pre-Implementation Scenario	Post-Implementation Scenario	Predictive Analytics
Risk Identification and Management	Limited ability to predict disruptions and risks in real-time.	Enhanced ability to Predictive Analytics disruptions (e.g., natural disasters, market shifts) and respond proactively.	Improved risk management, allowing for faster recovery and resource reallocation.
Demand Forecasting	Reliance on historical data and manual forecasting methods prone to inaccuracies.	Use of machine learning algorithms and historical data to predict future demand trends with higher accuracy.	Reduced instances of stockouts and excess inventory, leading to cost savings.
Inventory Optimization	Difficulty in maintaining optimal inventory levels.	Real-time inventory tracking and predictive models to optimize stock levels.	Reduced wastage and improved supply chain efficiency through better inventory management.
Supply Chain Resilience	Vulnerability to sudden disruptions affecting production and delivery.	Ability to simulate different disruption scenarios and build flexible strategies.	Increased resilience, faster response times to disruptions, and minimized operational downtime.

Pre- and post-implementation of Predictive Analytics is seen through the lens of the following aspects of the supply chain in the table below. Problems that organizations experienced prior to Predictive Analytics include poor predictive control, with organizations unable to determine how long disruptions would last, the act of forecasting being done in traditional methods, and organizations struggling to determine appropriate levels of inventory. The Predictive Analytics gained a good Predictive Analytics after the integration of Predictive Analytics .These future models helped gain more insight on the risks because the models indicated when disruptions might occur, thus allowing for appropriate preventive action to be taken. The demand forecasting improved and cut down some of the major stockout and overstocking problems, while the inventory optimization got more specific intelligence in real-time tracking. These caused enhanced supply chain flexibility to help bring back in organizations in case interruptions. ns. In toto, Predictive Analytics has assisted Predictive Analytics in making decisions that offer better value and effectiveness, cost savings, and enhancing their Predictive Analytics city to address volatility.

Benefits of Management Information Systems Integration:

The adoption of Management Information Systems in organizations is complex but provides many benefits, including improving decisions, productivity, and assets. The use of Management Information Systems imputes real-time data and more detailed reports, which facilitate timely decision-making, more accurate at the management's level. These involve the of manual activities, the improvement of accuracy, and the enhancement of efficiency in operations for data collection, processing, and analysis. Management Information Systems strengthens the communication sphere because it unifies the Predictive Analytics and functions interacting with each other and centralizes the information processing.

It has the benefits of making timely information that may help in decision-making, as well as for finding out problems and opportunities for improving efficiency in an organization, costs, and efficiently allocating resources. Through Management Information Systems, enhanced client satisfaction is achieved through quicker response and service delivery. It helps make an organization more competitive by providing more Predictive Analytics rent insights into the market and organizational performance indicators while helping an organization meet regulatory requirements by providing quality records and reports. When organizations Predictive Analytics they are able to Predictive Analytics their Management Information Systems to handle the added levels of complication as the organizations grow. Management Information Systems integration enhances strategic planning, protects data, drives improved organizational performance, gives a competitive advantage and supports ongoing organizational development.

Figure No.02: Benefits of Management Information Systems integration in Supply chain management

Case Studies:

Table No.02:the case studies of organizations leveraging predictive analytics and
Management Information Systems

Munagement Information Systems				
Organization	Industry	Key Benefits of Predictive Analytics & Management Information Systems	Outcome	
Walmart	Retail	Optimized supply chain, demand forecasting, inventory management, and reduced stockouts.	Improved product availability, reduced inventory costs, enhanced operational efficiency.	
Netflix	Entertainment/Media	Personalized recommendations, customer behavior prediction, content acquisition strategy optimization.	Increased user engagement, higher retention rates, improved customer satisfaction.	
UPS	Logistics/Transportation	Optimized delivery routes, reduced fuel consumption, improved delivery times, better customer satisfaction.	Reduced operational costs, improved delivery efficiency, better sustainability in operations.	
Coca-Cola	Beverage	Demand forecasting, optimized production planning, seasonal demand prediction, distribution strategy enhancement.	Improved operational efficiency, reduced stockouts, better market response.	
General Electric (GE)	Manufacturing	Predictive maintenance for industrial equipment, extended machinery life Predictive Analytics n, reduced unplanned downtime.	Significant cost savings, increased machinery uptime, improved productivity.	
Target	Retail	Predicting customer buying Predictive Analytics, targeted marketing, inventory optimization, seasonal demand forecasting.	Enhanced marketing effectiveness, improved sales, more efficient inventory management.	
Delta & American Airlines	Aviation	Flight scheduling optimization, predictive flight delay management, resource allocation, and staffing optimization.	Reduced flight delays, improved customer experience, better operational efficiency.	

The table indicates how the various demands of different organizations from different industries have been served through the application of predictive analytics and the Management Information Systems Such technologies, given an example by the giant retailer Walmart, enabled the organization to enhance accuracy in demand projection for products and inventory, thereby minimizing instances of stockouts, improving the availability of products to customers and lowering operational costs. Business intelligence and data mining, Netflix gave its audiences more of what they wanted and helped it make more accurate programming decisions by using predictive analytics. UPS employed a value system and modeled the delivery routes as well as estimated delays and consumption of fuel by utilizing real-time data. Coca-Cola used predictive analytics greatly for predicting consumer demand and optimizing a more effective production calendar and inventory stock. General Electric practices predictive maintenance in order to avoid the downtimes of equipment that lead to the optimization of costs and productivity. The application of predictive analytics for buying Predictive Analytics of customers to maximize sales and inventory, enhancing its marketing efficiency. The enterprise applications of predictive analytics include the flight scheduling optimization with the help of predictive

analytics of the possible operational challenges and the adjustment of staff working time on the example of such airlines as Delta and American Airlines. The following case studies discuss the effectiveness of predictive analytics and Management Information Systems in organizations and present the kind of changes organizations can implement to match the speed of change of consumer needs through system improvement.

Challenges:

The use of Management Information Systems and predictive analytics provides numerous benefits, but organizations have several barriers to overcome to successfully implement and apply the technologies. One challenge that remains is how to acquire high-quality and consistent data since incomplete and inaccurate data negatively Predictive Analytics the prediction process and, as a result, affect decisions made. The structure required for the smooth mechanism and the human resources of professional experts to operate the whole mechanism, might not be easily afforded by the small and medium-scale businesses.

Data analysis is a little complex for predictive analytics, one needs specialized human beings who decipher between algorithms and models. Employees and managers' reactions, data protection and cybersecurity issues and the issues related to an increase in the volume of data obtained from different sources make the integration process more challenging. The aspects of introducing new systems into the existing network topology, following regulatory requirements and being overburdened by automation. An organization is able to overcome these challenges, they would be rewarded with important competitive benefits which include but are not limited to efficiency gains, better strategic decisions, and increased competitiveness resulting from efficient Management Information Systems and predictive analytics deployment.

Discussion of Trends:

The combination of management information systems and predictive analytics has given rise to a few trends that are revolutionizing trade across industries. One is the rise of the incorporation of Artificial Intelligence and Machine Learning in organizations to supplement and improve the accuracy of the predictions by analyzing big data. cloud-oriented solutions have emerged as critical, providing endeavors with cost-efficient tools and means for data storage and computing. The use of real-time data processing, which allows the organizations to make decisions much faster, is becoming more popular.

The rise in data democratization is moving non-IT employees to allow them to analyze data independently with tools designed for such purposes. The coupling of the Internet of Things with predictive analytics has reemerged and continues to grow. It provides businesses with data in real-time customer interactions, equipment and supply chains. Data reaches the core of organizational strategies and work; firms seek to protect clients' information and meet the requirements of the GDPR and other similar regulations. Customer experience through predictive analytics is extending personalization and involvement in specific fields such as retail and healthcare. The need for more efficient energy consumption and reassessment of wastes generated is pressing Predictive Analytics to implement elements of the predictive model. The trend is augmented decision-making which means that insights are predicted to help decision-makers rather than replace them.

Future Directions

The future trends in management information systems and predictive analytics are bound to be determined by progress in the following fields. With the future advances in Artificial Intelligence and deep learning technologies, these two aspects will improve the predictive modeling, which will allow businesses to make better long-term predictions. Edge and fog computing will complement each other and enable real-time data processing, especially for industries that use the concepts of IoT. Predictive analytics advantageous to autonomous systems, as this will actually enhance on the safety of the system and its operations. Quantum computing will complement predictive analytics much more by providing ways of processing large data volumes in shorter Predictive Analytics ns of time, which could enhance the Predictive Analytics of sectors like finance and healthcare. Implementing augmented reality and virtual reality with preeminent predictive analytics will provide clients with new methods of data visualization and interaction for making enhanced decisions.

Conclusion

The combination of Management Information Systems and predictive analytics is expected to bring dramatic changes to the business world. It is evident that the overall use of predictive analytics in Management Information Systems organizations enhance decision-making, organizational productivity and customer satisfaction. Artificial intelligence, machine learning and processing of real-time data help organizations to learn from the future and create competitive advantages. These Predictive Analytics are more relevant in the current world because success involves responding to and adapting to change quickly. Predictive analytics' focus on both current business process enhancement and risk visualization makes it fundamental for future success. These technologies should be embraced by businesses as a way of improving SCs ability to cope with risks and changes and pursue sustainable corporate action. Management Information Systems and predictive

analytics in Predictive Analytics offer a way for organizations to tap into new possibilities and outcompete rivals where data has become the rage.

References

- 1. Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data analytics for business and management. *Management Decision*, *57*(8), 1993-2009.
- 2. Asamoah, D., Doran, D., & Schiller, S. (2015). Teaching the foundations of data science: An interdisciplinary approach. *arXiv* preprint *arXiv*:1512.04456.
- 3. Bag, S., Gupta, S., Choi, T. M., & Kumar, A. (2021). Roles of innovation leadership on using big data analytics to establish resilient healthcare supply chains to combat the COVID-19 Predictive Analytics ndemic: A multimethodological study. *IEEE Transactions on Engineering Management*.
- 4. Baird, A., Angst, C., & Oborn, E. (2018). Management Information Systems Q Research Curation on Health Information Technology Research Curation Team. *Management Information Systems Quarterly*.
- Barfar, A., Predictive Analytics dmanabhan, B., & Hevner, A. (2017). Applying behavioral economics in predictive analytics for B2B churn: Findings from service quality data. *Decision Support Systems*, 101, 115-127.
- 6. Belousova, O., Walsh, S., & Groen, A. (2021). COVID-19 as industry forcing function: Challenges for entrepreneurship in the post-Predictive Analytics ndemic future. *Φορςαμπ*, *15*(4 (eng)), 33-41.
- 7. Ben-Assuli, O., & Predictive Analytics R. (2020). Trajectories of Repeated Read Management Information Systems of Chronic Disease Predictive Analytics: Risk Stratification, Profiling, and Prediction. *Management Information Systems Quarterly*, 44(1).
- 8. Birkie, S. E., Trucco, P., & Fernandez Campos, P. (2017). Effectiveness of resilience Predictive Analytics in mitigating disruptions: leveraging on supply chain structural complexity. *Supply Chain Management: An International Journal*, 22(6), 506-521.
- 9. BRESTER, C., NISKA, H., & KOLEHMAINEN, M. Weather-Driven Predictive Control of a Battery Storage for Improved Microgrid Resilience.
- 10. Breuker, D., Matzner, M., Delfmann, P., & Becker, J. (2016). Comprehensible predictive models for business processes. *Management Information Systems Quarterly*, 40(4), 1009-1034.
- 11. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., ... & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. *Earthquake spectra*, 19(4), 733-752.
- 12. Brynjolfsson, E., Jin, W., & McElheran, K. (2021). The power of prediction: predictive analytics, workplace complements, and business performance. *Business Economics*, *56*, 217-239.
- 13. Carter, L., Liu, D., & Cantrell, C. (2020). Exploring the intersection of the digital divide and artificial intelligence: A hermeneutic literature review. *AIS Transactions on Human-Computer Interaction*, 12(4), 253-275.
- 14. Celestin, M., & Vanitha, N. (2015). Navigating supply chain chaos: Strategies for resilience amid global disruptions. *International Journal of Multidisciplinary Research and Modern Education*, 1(2), 457-464.
- 15. Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2021). Empirical investigation of data analytics Predictive Analytics and organizational flexibility as complements to supply chain resilience. *International Journal of Production Research*, 59(1), 110-128.
- 16. Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. *Journal of cleaner production*, 196, 1508-1521.
- 17. Floetgen, R. J., Strauss, J., Weking, J., Hein, A., Urmetzer, F., Böhm, M., & Krcmar, H. (2021). Introducing platform ecosystem resilience: leveraging mobility platforms and their ecosystems for the new normal during COVID-19. *European Journal of Information Systems*, 30(3), 304-321.
- 18. George, J. P., & Sagar Chandra, K. (2021). Asset productivity in organizations at the intersection of Big Data Analytics and supply chain management. In *Image Processing and Capsule Networks: ICIPCN 2020* (pp. 319-330). Springer International Publishing.
- 19. Gregor, S. (2006). The nature of theory in information systems. *Management Information Systems quarterly*, 611-642.
- 20. Gupta, S., Drave, V. A., Bag, S., & Luo, Z. (2019). Leveraging smart supply chain and information system agility for supply chain flexibility. *Information Systems Frontiers*, *21*, 547-564.
- 21. Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic caPredictive Analytics view. *Industrial Marketing Management*, 90, 581-592.
- 22.He, Z., Chen, H., Yan, H., Yin, Y., Qiu, Q., & Wang, T. (2021). Scenario-based comprehensive assessment for community resilience adapted to fire following an earthquake, implementing the analytic network process and preference ranking organization method for enriched evaluation II techniques. *Buildings*, 11(11), 523.
- 23. Heizer, J., Render, B., & Munson, C. (2020). *Operations management: sustainability and supply chain management*. Pearson.

- 24. Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising: Conceptualization of the field and future directions. *Journal of Advertising*, 49(4), 367-376.
- 25. Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*, 32(9), 775-788.
- 26. Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019). Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. *Handbook of ripple effects in the supply chain*, 309-332.
- 27. Jeble, S., Dubey, R., Childe, S. J., Predictive Analytics Predictive Analytics, T., Roubaud, D., & Prakash, A. (2018). Predictive Analytics ct of big data and predictive analytics Predictive Analytics on supply chain sustainability. *The International Journal of Logistics Management*, 29(2), 513-538.
- 28. Jeble, S., Kumari, S., Venkatesh, V. G., & Singh, M. (2020). Influence of big data and predictive analytics and social capital on performance of humanitarian supply chain: Developing framework and future research directions. *Benchmarking: An International Journal*, 27(2), 606-633.
- 29. Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. *International journal of operations & production management*, 37(1), 10-36.
- 30. Kane, G. C., Alavi, M., Labianca, G., & Borgatti, S. P. (2014). What's different about social media networks? A framework and research agenda. *Management Information Systems quarterly*, 38(1), 275-304.
- 31. Kumar, S., Dube, D., & Aithal, P. S. (2020). Emerging concept of tech-business-analytics an intersection of IoT & data analytics and its applications on predictive business decisions. *International Journal of Applied Engineering and Management Letters (IJAEML)*,(2020), 4(2), 200-210.
- 32.Laudon, K. C., & Laudon, J. P. (2004). Management information systems: Managing the digital firm. Pearson Educación.
- 33. Leidner, D. E., & Kayworth, T. (2006). A review of culture in information systems research: Toward a theory of information technology culture conflict. *Management Information Systems quarterly*, 357-399.
- 34.Lin, Y. K., Chen, H., Brown, R. A., Li, S. H., & Yang, H. J. (2017). Healthcare predictive analytics for risk profiling in chronic care. *Management Information Systems Quarterly*, 41(2), 473-496.
- 35. Malloy, T. (2021). Re-Imagining Risk: The Role of Resilience and Prevention. Nev. LJ, 22, 145.
- 36. Manashty, A. (2019). Predictive analytics in health monitoring.
- 37. Mani, V., Delgado, C., Hazen, B. T., & Predictive Analytics P. (2017). Mitigating supply chain risk via sustainability using big data analytics: Evidence from the manufacturing supply chain. *Sustainability*, *9*(4), 608.
- 38.Mızrak, F. Resilience and Innovation Strategies: How Businesses Adapt to Supply Chain Disruptions in the Post-Predictive Analytics ndemic Era. *Politik Ekonomik Kuram*, *8*(3), 581-600.
- 39. Nann, S., Krauss, J., & Schoder, D. (2013). Predictive analytics on public data-the case of stock markets.
- 40. NEGRI, A. (2016). Complexity management from the resilience perspective: an exploratory study on supply chains.
- 41. Nimmagadda, V. S. P. (2020). AI-Powered Predictive Analytics for Retail Supply Chain Risk Management: Advanced Techniques, Applications, and Real-World Case Studies. *Distributed Learning and Broad Applications in Scientific Research*, 6, 152-194.
- 42. Nimmagadda, V. S. P. (2021). Artificial Intelligence for Real-Time Logistics and Transportation Optimization in Retail Supply Chains: Techniques, Models, and Applications. *Journal of Machine Learning for Healthcare Decision Support*, 1(1), 88-126.
- 43. Noludwe, S., & Komla, F. A. (2020, March). Enhancing Distribution System Resilience Against Extreme Events: A Review. In *2020 Clemson University Power Systems Conference (PSC)* (pp. 1-9). IEEE.
- 44.O'brien, J. A., & Marakas, G. M. (2006). *Management information systems* (Vol. 6). New York, NY, USA: McGraw-Hill Irwin.
- 45. Ouabouch, L. (2015). Overview on supply chain resilience. Materials Management Review, 11(9), 16-18.
- 46.Ralston, P., & Blackhurst, J. (2020). Industry 4.0 and resilience in the supply chain: a driver of Predictive Analytics enhancement or Predictive Analytics loss? *International Journal of Production Research*, *58*(16), 5006-5019.
- 47. Raoufi, H., Vahidinasab, V., & Mehran, K. (2020). Power systems resilience metrics: A comprehensive review of challenges and outlook. *Sustainability*, 12(22), 9698.
- 48. Ravichandran, T., Lertwongsatien, C., & Lertwongsatien, C. (2005). Effect of information systems resources and Predictive Analytics on firm performance: A resource-based perspective. *Journal of management information systems*, 21(4), 237-276.
- 49.Rizk, A., & Elragal, A. (2020). Data science: developing theoretical contributions in information systems via text analytics. *Journal of Big Data*, 7, 1-26.
- 50. Sandhya, K., & Chatterjee, K. (2021). A review on the state of the art of proliferating abilities of distributed generation deployment for achieving resilient distribution system. *Journal of Cleaner Production*, 287, 125023.
- 51. Schaffer, N., Pérez, P. G., & Weking, J. (2021). How Business Model Innovation fosters Organizational Resilience during COVID-19. In *AMCIS*.

- 52. Seuring, S., & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. *Supply chain management: An international journal*, *17*(5), 544-555.
- 53. Seuring, S., & Kache, F. (2017). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. *International Journal of Operations & Production Management*, 37(1), 10-36.
- 54. Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. *MANAGEMENT INFORMATION SYSTEMS quarterly*, 553-572.
- 55. Sincorá, L. A., Oliveira, M. P. V. D., Zanquetto-Filho, H., & Ladeira, M. B. (2018). Business analytics leveraging resilience in organizational processes. *RAUSP Management Journal*, *53*(3), 385-403.
- 56. Singh, N. P., & Singh, S. (2019). Building supply chain risk resilience: Role of big data analytics in supply chain disruption mitigation. *Benchmarking: An International Journal*, *26*(7), 2318-2342.
- 57. Tanque, M., & Foxwell, H. J. (2020). The Intersection of Data Analytics and Data-Driven Innovation. In *AI* and *Big Data's Potential for Disruptive Innovation* (pp. 317-343). IGI Global.
- 58. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. *Journal of Business logistics*, 34(2), 77-84.
- 59. Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. *Journal of Business logistics*, 34(2), 77-84.
- 60. Wang, G., Gunasekaran, A., Ngai, E. W., & Predictive Analytics Predictive Analytics dopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. *International journal of production economics*, 176, 98-110.
- 61. Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachem Predictive Analytics, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. *Expert Systems with Applications*, 184, 115561.
- 62. Zhang, Y., Porter, A. L., Cunningham, S., Chiavetta, D., & Newman, N. (2020). Predictive Analytics or intersecting lines? Intelligent bibliometrics for investigating the involvement of data science in policy analysis. *IEEE Transactions on Engineering Management*, 68(5), 1259-1271.
- 63. Zyner, A., Worrall, S., & Nebot, E. M. (2019). ACFR five roundabouts dataset: Naturalistic driving at unsignalized intersections. *IEEE Intelligent Transportation Systems Magazine*, 11(4), 8-18.