
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Educational Administration: Theory and Practice 
2024 30(10), 720-729 
ISSN: 2148-2403 

https://kuey.net/                                              Research Article 
 

Big Data-Driven Security Information And Event 
Management (SIEM) Enhanced By AI 

 
Shanu Kumar1*, Nidhi2, Amit Kunwar3 

 
1*Assistant Professor, Computer Science and Engineering, Dr. C. V Raman University Vaishali Bihar 
2Assistant Professor, Computer Science and Engineering, Dr. C. V Raman University Vaishali Bihar 
3Assistant Professor, Computer Science and Engineering, Dr. C. V Raman University Vaishali Bihar 

 
Citation: Shanu Kumar, et al (2024), Big Data-Driven Security Information And Event Management (SIEM) Enhanced By AI, 
Educational Administration: Theory and Practice, 30(10) 720-729 
Doi: 10.53555/kuey.v30i10.9642 
 

ARTICLE INFO ABSTRACT 

 This study explores the integration of big data technologies and artificial 
intelligence (AI) techniques to enhance Security Information and Event 
Management (SIEM) systems. Traditional SIEM solutions face significant 
challenges in processing the volume, velocity, and variety of modern security 
data. We propose a novel framework that leverages distributed computing, 
machine learning algorithms, and real-time analytics to overcome these 
limitations. Our architecture employs a three-layer approach: data ingestion and 
preprocessing, advanced analytics, and intelligent response. Experimental 
evaluation using real-world datasets demonstrates that our AI-enhanced SIEM 
system achieves 94.2% detection accuracy with a 73% reduction in false positives 
compared to conventional SIEM implementations. The system successfully 
processed over 1.2 million events per second while maintaining low latency. This 
research contributes to the evolving cybersecurity landscape by establishing a 
scalable, adaptive SIEM framework capable of addressing sophisticated threats 
in complex enterprise environments. 
 
Keywords: SIEM, artificial intelligence, machine learning, big data analytics, 
cybersecurity, threat intelligence 

 
1. Introduction 

 
The cybersecurity landscape has transformed dramatically with the proliferation of connected devices, cloud 
computing, and sophisticated attack vectors. Organizations face an ever-growing volume of security events 
from diverse sources, making traditional security monitoring approaches increasingly ineffective (Huang et al., 
2020). Security Information and Event Management (SIEM) systems have emerged as critical components of 
enterprise security infrastructure, consolidating logs and events from multiple sources to facilitate detection 
and response to security incidents. 
However, conventional SIEM solutions encounter significant challenges in the big data era. The three V's of big 
data—volume, velocity, and variety—overwhelm traditional SIEM architectures, leading to performance 
bottlenecks, high false positive rates, and limited analytical capabilities (Miloslavskaya & Tolstoy, 2016). 
Additionally, adversaries continue to develop more sophisticated techniques that evade signature-based 
detection methods (Apruzzese et al., 2018). 
Artificial intelligence (AI) and machine learning (ML) have demonstrated promising results in enhancing 
threat detection and response capabilities. These technologies can identify complex patterns, predict potential 
threats, and automate response actions (Sarker et al., 2020). When integrated with big data technologies, AI-
powered SIEM systems can process massive volumes of security data in real-time, adapt to evolving threat 
landscapes, and provide actionable intelligence with reduced false positives. 
This research addresses the following questions: 
1. How can big data architectures be effectively leveraged to enhance SIEM capabilities? 
2. What AI/ML techniques are most suitable for security event analysis in enterprise environments? 
3. How can an AI-enhanced SIEM system reduce false positives while maintaining high detection rates? 
4. What architecture best supports scalability and real-time processing requirements? 
Our study makes several contributions to the field. First, we present a comprehensive architecture for big data-
driven SIEM enhanced by AI. Second, we implement and evaluate novel ML algorithms specifically tailored for 
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security event correlation and anomaly detection. Third, we provide empirical evidence of performance 
improvements through extensive testing with real-world datasets. Finally, we discuss practical deployment 
considerations and integration strategies with existing security infrastructure. 
 

2. Literature Review 
 
2.1 Evolution of SIEM Systems 
SIEM systems have evolved from simple log management tools to complex platforms that provide real-time 
monitoring, correlation, and analytics capabilities. Gartner first coined the term in 2005, combining security 
information management (SIM) and security event management (SEM) functionalities (Nicolett & Kavanagh, 
2009). Early SIEM systems focused primarily on compliance requirements and basic correlation rules. 
Subsequent generations incorporated more advanced analytics, visualization capabilities, and integration with 
other security tools. Barros and Chuvakin (2015) described the evolution of SIEM from rule-based systems to 
context-aware platforms capable of ingesting diverse data types and providing more nuanced risk assessments. 
However, these improvements were incremental and did not fundamentally address the architectural 
limitations when faced with big data challenges. 
 
2.2 Big Data in Cybersecurity 
The application of big data technologies in cybersecurity has gained significant attention in recent years. Zuech 
et al. (2015) reviewed big data analytics approaches for intrusion detection, highlighting the potential of 
distributed computing frameworks like Hadoop and Spark for processing security data at scale. Similarly, Terzi 
et al. (2017) proposed a big data analytics architecture for security intelligence that employed NoSQL databases 
and stream processing to handle heterogeneous security data sources. 
Jeong et al. (2019) demonstrated a Hadoop-based security monitoring system that achieved improved 
detection rates for distributed denial-of-service (DDoS) attacks. Their implementation utilized MapReduce for 
parallel processing of network traffic data, enabling analysis of historical patterns alongside real-time events. 
However, their approach lacked sophisticated anomaly detection capabilities. 
 
2.3 AI and Machine Learning in Cybersecurity 
Machine learning techniques have shown promise in addressing numerous cybersecurity challenges. Buczak 
and Guven (2016) surveyed ML approaches for intrusion detection, categorizing them based on supervised, 
unsupervised, and semi-supervised learning paradigms. They noted that while supervised techniques often 
achieved higher accuracy, they required labeled datasets that were difficult to obtain and maintain in rapidly 
evolving threat landscapes. 
Deep learning approaches have gained traction for their ability to automatically learn hierarchical features from 
raw data. Alom and Taha (2017) developed a deep belief network for network intrusion detection that 
outperformed traditional ML algorithms on the NSL-KDD dataset. Similarly, Vinayakumar et al. (2019) 
demonstrated the effectiveness of recurrent neural networks (RNNs) and long short-term memory (LSTM) 
networks for detecting malicious URL and domain generation algorithms. 
Ensemble methods combining multiple algorithms have shown particular promise in security applications. 
Abdel-Basset et al. (2021) proposed a neutrosophic enhanced ensemble approach that significantly reduced 
false positives in intrusion detection systems. Their approach incorporated uncertainty handling, which is 
crucial in the security domain where complete information is rarely available. 
 
2.4 AI-Enhanced SIEM Solutions 
Research on integrating AI capabilities into SIEM systems has accelerated in recent years. Bhatt et al. (2018) 
developed an enhanced SIEM architecture incorporating machine learning for anomaly detection and user 
behavior analytics. Their system demonstrated improved detection of insider threats but faced challenges with 
scalability under high data volumes. 
Leszczyna (2019) reviewed commercial and open-source SIEM solutions with AI capabilities, noting that most 
implementations were limited to specific use cases rather than comprehensive AI integration. The study 
identified significant gaps in real-time processing capabilities, adaptability to new threats, and explanation of 
AI-derived conclusions. 
More recently, Zhao et al. (2020) proposed a cloud-based SIEM system with distributed machine learning 
capabilities. Their architecture utilized containerization and microservices to scale analytics components 
independently. While promising, their evaluation was limited to simulated environments rather than 
production deployments. 
 
2.5 Research Gap 
Despite advances in both big data technologies and AI applications for cybersecurity, comprehensive 
integration of these approaches in SIEM systems remains limited. Existing research typically addresses either 
the big data challenges or the analytical capabilities separately, without a unified framework that leverages both 
aspects. Additionally, there is insufficient empirical evaluation of AI-enhanced SIEM systems in terms of 
detection accuracy, false positive rates, and processing performance under realistic conditions. 
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Our research aims to address these gaps by developing and evaluating a comprehensive big data-driven SIEM 
architecture enhanced by multiple AI techniques, with a focus on practical deployment considerations in 
enterprise environments. 
 

3. Methodology 
 
3.1 Research Design 
We employed a design science research methodology to develop and evaluate our AI-enhanced SIEM system. 
This approach involved iterative cycles of design, implementation, and evaluation to create a solution that 
addresses real-world cybersecurity challenges. Our research process consisted of the following phases: 
1. Problem identification and motivation 
2. Definition of objectives for the solution 
3. Design and development of the system 
4. Demonstration in a controlled environment 
5. Evaluation using real-world datasets 
6. Communication of results and findings 
 
3.2 Data Collection and Preprocessing 
To evaluate our system, we collected security event data from multiple sources, including: 
1. Network flow records (NetFlow/IPFIX) 
2. System logs from Windows and Linux servers 
3. Application logs from web servers and databases 
4. Firewall and IDS/IPS alerts 
5. Authentication events from identity management systems 
 
Data collection spanned a three-month period in a large enterprise environment with over 5,000 endpoints 
and 500 servers. This resulted in approximately 120 billion raw events, averaging 1.5 billion events per day. 
Data preprocessing involved several steps: 
● Normalization of timestamps and event formats 
● Enrichment with context information (asset details, user information, threat intelligence) 
● Feature extraction for machine learning algorithms 
● Data quality assessment and handling of missing values 
● Anonymization of sensitive information 
 
3.3 System Architecture 
Our proposed system architecture consists of three main layers: 
1. Data Ingestion and Storage Layer: Responsible for collecting, parsing, and storing security events from 
diverse sources. 
2. Analytics Layer: Implements big data processing and AI/ML algorithms for event correlation and 
anomaly detection. 
3. Presentation and Response Layer: Provides visualization, alerting, and automated response 
capabilities. 
 

Figure 1 illustrates the high-level architecture of the system. 
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3.4 AI and Machine Learning Techniques 
We implemented several AI and machine learning techniques to address different security use cases: 
1. Supervised Learning: For known attack pattern detection using labeled datasets 
○  Random Forest for multiclass classification of attack types 
○  Gradient Boosting for binary classification of malicious/benign events 
○  Deep Neural Networks for complex pattern recognition 
 
2. Unsupervised Learning: For anomaly detection and novel threat identification 
○  Isolation Forest for point anomaly detection 
○  DBSCAN for clustering similar security events 
○  Autoencoders for detecting anomalous patterns in user behavior 
 
3. Semi-supervised Learning: For leveraging limited labeled data 
○  One-class SVM for profiling normal system behavior 
○  Active learning for selective labeling of uncertain events 
 
4. Time Series Analysis: For detecting temporal anomalies 
○  LSTM networks for sequence prediction and anomaly detection 
○  Seasonal decomposition for identifying deviations from regular patterns 
Table 1 summarizes the machine learning techniques and their specific applications in our SIEM system. 
 

Table 1: Machine Learning Techniques and Their Applications in SIEM 

ML 
Technique 

Application Advantages Limitations 

Random Forest Classification of known 
attack patterns 

High accuracy, handles 
imbalanced data 

Requires feature engineering 

Isolation Forest Anomaly detection in 
network traffic 

Efficient with high-
dimensional data, 
minimal assumptions 

May miss contextual 
anomalies 

LSTM Networks User behavior analysis, 
session anomalies 

Captures temporal 
dependencies 

Computationally intensive, 
requires significant training 
data 

Gradient 
Boosting 

Alert prioritization, risk 
scoring 

High precision, handles 
diverse features 

Prone to overfitting without 
careful tuning 

Autoencoders Entity behavior analytics Unsupervised detection 
of complex anomalies 

Difficult to interpret, requires 
parameter tuning 

DBSCAN Event clustering, attack 
campaign detection 

No predefined cluster 
number, identifies noise 

Sensitive to parameter 
selection 

One-class SVM System behavior 
profiling 

Works with unlabeled 
data 

Sensitive to outliers in 
training data 

Deep Neural 
Networks 

Complex pattern 
recognition 

Automatic feature 
learning, high accuracy 

Requires large training 
datasets, black-box nature 

 
3.5 Implementation Technologies 
Our system was implemented using the following technologies: 
1. Data Ingestion and Storage: 
○  Apache Kafka for real-time event streaming 
○  Elasticsearch for indexed storage and fast retrieval 
○  Apache Hadoop HDFS for long-term storage 
○  Apache NiFi for data flow management 
 
2. Processing and Analytics: 
○  Apache Spark for distributed batch processing 
○  Apache Flink for stream processing 
○  TensorFlow and PyTorch for deep learning models 
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○  Scikit-learn for traditional machine learning algorithms 
 
3. Visualization and Response: 
○  Kibana for dashboards and visualizations 
○  Custom web interface for interactive analysis 
○  REST APIs for integration with security orchestration platforms 
 
3.6 Evaluation Metrics 
We evaluated our system using the following metrics: 
1. Detection Performance: 
○  Accuracy, precision, recall, and F1-score 
○  Area Under ROC Curve (AUC) 
○  False positive rate (FPR) and false negative rate (FNR) 
2. System Performance: 
○  Events processed per second 
○  Processing latency 
○  Resource utilization (CPU, memory, network, disk) 
3. Scalability: 
○  Linear scaling capability with additional nodes 
○  Performance under increasing event volumes 
 

4. Experimental Results 

 

4.1 Datasets 
We evaluated our system using a combination of real-world enterprise data and public benchmark datasets: 
1. A proprietary dataset collected from the enterprise environment described in Section 3.2 
2. UNSW-NB15 dataset (Moustafa & Slay, 2015) 
3. CSE-CIC-IDS2018 dataset (Sharafaldin et al., 2018) 
4. Unified Host and Network Dataset (Kent, 2016) 
 
The combined dataset included diverse attack scenarios, including: 
● Network-based attacks (port scanning, DDoS, brute force) 
● Malware infections and command-and-control communications 
● Insider threat activities 
● Advanced persistent threats (APTs) 
● Zero-day exploits 
 
4.2 Detection Performance 
We compared our AI-enhanced SIEM system against a traditional rule-based SIEM solution and a baseline 
machine learning approach without big data integration. Table 2 presents the detection performance metrics 
for various attack categories. 
 

Table 2: Detection Performance Comparison 
Attack Category Metric Traditional SIEM Baseline ML AI-Enhanced SIEM 
Network Intrusion Accuracy 82.7% 88.3% 94.1% 
 Precision 76.2% 83.5% 91.8% 
 Recall 69.4% 79.7% 88.9% 
 F1-Score 72.6% 81.5% 90.3% 
Malware Activity Accuracy 79.5% 87.2% 93.6% 
 Precision 73.8% 82.1% 90.4% 
 Recall 65.9% 77.8% 89.5% 
 F1-Score 69.6% 79.9% 89.9% 
Insider Threats Accuracy 71.3% 83.5% 91.8% 
 Precision 67.4% 79.2% 88.7% 
 Recall 58.2% 74.5% 87.2% 
 F1-Score 62.5% 76.8% 87.9% 
APTs Accuracy 65.8% 81.9% 93.2% 
 Precision 61.2% 78.4% 89.5% 
 Recall 52.7% 72.6% 86.3% 
 F1-Score 56.6% 75.4% 87.9% 
Overall Accuracy 76.9% 85.9% 94.2% 
 Precision 70.6% 81.3% 90.3% 
 Recall 62.5% 76.7% 88.2% 
 F1-Score 66.3% 78.9% 89.2% 
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 FPR 8.7% 4.2% 2.3% 

 
The results demonstrate significant improvements in all detection metrics with our AI-enhanced SIEM system. 
Particularly notable is the 73% reduction in false positive rates compared to traditional SIEM, addressing a 
critical operational challenge in security operations centers. 
 

Figure 2 illustrates the ROC curves for the three systems across different attack categories. 

 
 
The ROC curves demonstrate that our AI-enhanced SIEM system consistently outperforms both traditional 
SIEM and baseline ML approaches across all attack categories. The improvement is particularly notable for 
advanced persistent threats (APTs), where traditional approaches struggle to detect sophisticated attack 
patterns. 
 
4.3 Feature Importance Analysis 
We analyzed the importance of different feature categories in our machine learning models to understand 
which attributes contribute most to detection accuracy. Figure 3 shows the feature importance distribution for 
the gradient boosting classifier. 
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The feature importance analysis reveals that network flow statistics, authentication patterns, and process 
execution activities are the most significant indicators for detecting malicious activities. This insight guided 
our feature engineering process and helped optimize the models for specific attack scenarios. 
 
4.4 System Performance 
We evaluated the system's performance in terms of throughput, latency, and resource utilization. Table 3 shows 
the comparison between traditional SIEM, baseline ML-enhanced SIEM, and our big data-driven AI-enhanced 
SIEM. 
 

Table 3: System Performance Metrics 

Metric Traditional 
SIEM 

Baseline 
ML 

AI-Enhanced 
SIEM 

Maximum throughput (events/sec) 75,000 210,000 1,250,000 

Average processing latency (ms) 6,500 2,300 850 

95th percentile latency (ms) 15,200 5,800 1,900 

Resource utilization (CPU) 72% 85% 64% 

Resource utilization (Memory) 65% 78% 72% 

Storage efficiency (events/GB) 1.2M 1.5M 3.8M 

Scalability (linear up to nodes) 4 8 32 

 
The results demonstrate that our big data-driven architecture significantly outperforms traditional approaches 
in terms of both throughput and latency. The system successfully processed over 1.2 million events per second 
while maintaining sub-second average processing latency, a critical requirement for real-time threat detection. 
We also measured the system's scalability by incrementally adding processing nodes and observing the 
throughput.  
 

Figure 4 illustrates the scaling behavior of the three systems. 

 
The scalability analysis shows that traditional SIEM systems plateau at around 4 nodes, while our AI-enhanced 
SIEM continues to scale linearly up to 32 nodes, demonstrating the effectiveness of our distributed 
architecture. 
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4.5 Real-world Use Case: APT Detection 
We applied our system to a real-world advanced persistent threat scenario that involved multiple stages: initial 
compromise, lateral movement, privilege escalation, data reconnaissance, and exfiltration. Figure 5 illustrates 
the detection timeline comparing the three approaches. 
 

 
 

The APT detection timeline demonstrates that our AI-enhanced SIEM detected attack stages significantly 
earlier than traditional approaches, with an average detection time of 12.8 hours compared to 99.6 hours for 
traditional SIEM and 60 hours for the baseline ML approach. This early detection capability is crucial for 
preventing data breaches and limiting attacker dwell time. 
 

5. Discussion 
 
5.1 Interpretation of Results 
The experimental results demonstrate several significant advantages of our big data-driven, AI-enhanced SIEM 
system: 
1. Improved Detection Accuracy: The system achieved a 94.2% overall accuracy, representing a 22.5% 
improvement over traditional SIEM and a 9.7% improvement over the baseline ML approach. This 
improvement is particularly pronounced for sophisticated attack categories like APTs and insider threats, 
where traditional pattern-matching techniques often fail. 
2. Reduced False Positives: Our system achieved a 73% reduction in false positive rates compared to 
traditional SIEM systems. This addresses one of the most significant operational challenges in security 
operations centers, where alert fatigue from excessive false positives can lead to missed genuine threats. 
3. Enhanced Processing Performance: The distributed big data architecture enabled processing of over 
1.2 million events per second, a 16.7x improvement over traditional SIEM systems. This performance is crucial 
for modern enterprise environments where event volumes continue to grow exponentially. 
4. Superior Scalability: Our system demonstrated linear scaling up to 32 nodes, while traditional 
approaches plateaued at much lower node counts. This scalability ensures the system can adapt to growing 
data volumes without requiring architectural redesign. 
5. Earlier Threat Detection: In the APT use case, our system detected attack stages an average of 86.8 
hours earlier than traditional SIEM, potentially preventing significant data loss and reducing remediation 
costs. 
 
5.2 Practical Implications 
The findings from our research have several practical implications for security operations: 
1. SOC Efficiency: The significant reduction in false positives allows security analysts to focus on genuine 
threats, improving operational efficiency and reducing alert fatigue. 
2. Cost Optimization: While the initial implementation of a big data infrastructure requires investment, the 
improved storage efficiency (3.8M events/GB vs. 1.2M events/GB for traditional SIEM) and better hardware 
utilization can lead to lower total cost of ownership over time. 
3. Adaptive Security: The AI components enable continuous learning from new attack patterns, making the 
system more resilient against evolving threats without requiring constant manual rule updates. 
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4. Threat Hunting: The big data architecture supports interactive exploration of historical security data at 
scale, enabling proactive threat hunting that would be impractical with traditional SIEM systems. 
5. Compliance Requirements: The improved detection capabilities and comprehensive data retention help 
organizations meet increasingly stringent regulatory requirements for security monitoring and incident 
response. 
 
5.3 Limitations and Challenges 
Despite the promising results, several limitations and challenges should be acknowledged: 
1. Data Quality Dependencies: The effectiveness of machine learning models heavily depends on the 
quality and representativeness of the training data. Organizations with limited historical security data may face 
challenges during initial deployment. 
2. Interpretability Concerns: Some of the advanced AI techniques, particularly deep learning models, 
operate as "black boxes," making it difficult to explain detection decisions to stakeholders or compliance 
auditors. 
3. Skills Gap: Implementing and maintaining AI-enhanced SIEM systems requires specialized skills in both 
cybersecurity and data science, which may be challenging for organizations facing talent shortages. 
4. Adversarial Resilience: Sophisticated attackers might attempt to evade machine learning detection 
through adversarial techniques, requiring ongoing research into more robust algorithms. 
5. Privacy Considerations: The comprehensive data collection necessary for effective analysis raises 
privacy concerns, particularly in regions with strict data protection regulations like GDPR. 
 

6. Conclusion and Future Work 
 
6.1 Summary of Contributions 
This research presented a comprehensive architecture for big data-driven SIEM enhanced by artificial 
intelligence. Our system integrates distributed computing technologies with advanced machine learning 
techniques to overcome the limitations of traditional SIEM solutions. The experimental evaluation 
demonstrated significant improvements in detection accuracy, processing performance, and scalability. Key 
contributions include: 
1. A scalable, three-layer architecture for security event processing that effectively handles the volume, 

velocity, and variety challenges of big data 
2. Novel applications of machine learning techniques for security event analysis, with particular emphasis on 

reducing false positives 
3. Empirical evidence of the effectiveness of AI enhancement across diverse attack scenarios 
4. Practical insights for implementing big data-driven SIEM systems in enterprise environments 
 
6.2 Future Research Directions 
Several promising directions for future research emerge from this work: 
1. Explainable AI for Security: Developing techniques to improve the interpretability of complex machine 
learning models used in security detection, allowing analysts to understand why specific alerts were generated. 
2. Adversarial Machine Learning: Investigating techniques to make security analytics more resilient 
against adversarial attacks that attempt to evade detection by manipulating input data. 
3. Transfer Learning for Security: Exploring transfer learning approaches to address the cold-start 
problem for organizations with limited labeled security data. 
4. Automated Response Integration: Extending the system to incorporate automated response 
capabilities that can take remedial actions based on high-confidence detections. 
5. Federated Learning for Security: Investigating privacy-preserving federated learning techniques that 
allow multiple organizations to collaboratively improve detection models without sharing sensitive security 
data. 
6. Human-AI Collaboration: Developing interactive interfaces that facilitate effective collaboration 
between security analysts and AI systems, combining human expertise with computational capabilities. 
In conclusion, our research demonstrates that the integration of big data technologies and artificial intelligence 
can significantly enhance SIEM capabilities, enabling organizations to detect and respond to security threats 
more effectively in increasingly complex environments. While challenges remain, the approach presented here 
offers a promising path forward for next-generation security monitoring systems. 
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