FEducational
Administration
Theory and Practice

Educational Administration: Theory and Practice
2021, 27(4), 1361-1367

ISSN: 2148-2403

https://kuey.net Research Article

An Optimized Cloud Load Balancing Approach Using
Hybrid DE-ABC Algorithms

Shameer A P*, Minimol V K2

*Department of Computer Science, NAM College Kallikkandy, Kannur, Kerala, India, 670693, Email: shameerap@gmail.com
2Department of Computer Science, NAM College Kallikkandy, Kannur, Kerala, India, 670693, Email: minimoldeepak@gmail.com

Citation: Shameer A P et al., (2021), An Optimized Cloud Load Balancing Approach Using Hybrid DE-ABC Algorithms, Educational
Administration: Theory and Practice, 27 (4) 1361-1367
Doi: 10.53555/kuey.v27i4.9763

ARTICLE INFO ABSTRACT

Cloud computing is a fast-growing emerging field that users can access a diverse
services —such as data storage, software applications, and servers—via the Internet. It
enables organizations to utilize remote resources provided by various service providers
on a pay-as-you-go basis. This model reduces the need for extensive on-site
infrastructure, allowing businesses to manage large-scale data and applications
virtually through the cloud. Load balancing is the potential process of assigning or
allocating the load among the different virtual machines existing in the data center. The
workload entering into the cloud computing environment need to be significantly
allocated to the resources, such that each share is responsible for sharing an equal
amount of loads at any particular point of time. The performance of the cloud
environment completely depends on the degree to which the resources are equally
shared, since imbalance in load leads to deterioration in the network efficiency. This
proposed work is the detailed view of the DE-ABC-Load Balancing (DE-ABCA-LB)
scheme presented for effective and efficient load balancing in cloud computing
framework. This study presents a mathematical model along with the parameters used
to design the fitness function that supports the DE-ABC-LB approach for effective load
balancing among virtual machines in a cloud environment. It also details the
experimental setup and analyzes the performance of the suggested work DE-ABC-LB
method under varying conditions, including different task volumes, instruction lengths,
and numbers of virtual machines.

1. INTRODUCTION TO DE-ABC-LB SCHEME

The DE-ABC-LB approach is based on the hybridization of Differential Evolution (DE) and Artificial Bee
Colony (ABC) metaheuristic algorithm for mutual elimination of their shortcoming in order to facilitate
significant load balancing between virtual machines in cloud environment. The DE-ABCA-LB approach
incorporates several parameters in the formulation of its fitness function, including node processing time
(HPT) , individual VM computational time , average VM PT, load standard deviation (Load SD), standard
normal deviation for VMs, and VM availability. These factors collectively contribute to achieving efficient
load balancing. The primary goal of the proposed DE-ABCA-LB method is to ensure equitable workload
distribution across various network paths, thereby minimizing the chances of both over-utilization and
under-utilization of cloud resources. Fair load balancing is achieved by assessing if the current task count on
a virtual server is relatively less than that of other virtual servers in the cloud environment. It also minimizes
the computation time of hosts and total response duration by estimating and comparing the PT incurred by
VM currently processing the tasks and the mean PT of remaining VMs in order to verify whether the
difference is exceeds the permissible limit greater value of load balancing threshold. The load balancing
threshold in the proposed DE-ABCA-load balancing methods plays a crucial role in influencing the standard
deviation, thereby helping to maintain an effective balance of workloads within the cloud environment.

2. LOAD BALANCING STRATEGIES

The load balancing approaches contributed for cloud computing environment is classified into two based on
the current or previous knowledge utilization as depicted in Figure 1.

Copyright © 2021 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://kuey.net/
mailto:shameerap@gmail.com
mailto:minimoldeepak@gmail.com

1362 Shameer A P et al. / Kuey, 27(4), 9763

Fowd Balaneing Alporithms

Stnie stratepy Dypumie strutegy

OLB, MET, MCT, TABL) Min-Min, Min-Max, A* Online OMine

Metn heurlstie ACO. Min=Min, Min-
AL, PSO, SA. GA Max, Maximum
Sullhuge

Figure 1: Load balancing strategies
3. THE MATHEMATICAL MODEL OF DE-ABCA-LB SCHEME

In the DE-ABCA-LB scheme, the cloud computing environment comprises of set of VMs with associated tasks
for processing. The complete set of virtual machines is considered to be parallel and unrelated with non-pre-
emptive independent tasks scheduled to them. In other works, task processing on a virtual machine is
uninterruptible. Thus, the proposed model assumes that the failure does not happen. This cloud computing
environment is considered to comprise of a collection of data centers, the data centers in turn consists of
hosts and each host includes a collection of 'n’ Virtual Machines. The individual data center consists of VM
LB (Load Balancer). This load balancer is responsible for identifying an appropriate host and suitable VM
from the selected host for the objective of allocating the subsequent task by computing some specific metrics.
The metrics used for task allocation such PT of host, mean PT of all hosts, PT of Virtual Machines, Mean PT
of all Virtual Machines, Load SD, Standard normal deviate of VM and availability of Virtual Machines for the
computation of fitness function.

4. PSEUDO CODE THE DE-ABCA-LB APPROACH

This section outlines of the DE-ABCA-LB approach, which is structured around two key functions. The first
function is designed to prioritize virtual machines (VMs) to avoid overloading by assigning tasks based on
their instruction lengths. This prioritization ensures that tasks are allocated to suitable VMs according to
their processing capabilities. The second key function aims to maintain load equilibrium among VMs by
implementing an allocation policy that restricts task assignments, thereby preventing excessive load on any
single VM. The pseudo code of the proposed approach is given below table.

Step lrset i =—1

Step 2: Minet € Ma s Integer (the highest computationaltime of
hosts is defined as the highest integer value recorded)

Step 3: For each entry of host 'i"in State sasqpss.

Step 4 When host i'is in an available state then

Step 5: If (Hostpyg) < HoStwimy) then

Step 6: Set Host pp jums = Host gr i)

Step 7: Seti € Current_host_count

Step 8: Endof all if conditional block

Step 9: End of all for loop block

Step10: Setj€1.

Step 11 Mifem € Max_valuedntsger (To identify the minimum, the
number of VMs is first assigned the greatest integer value)

Step 12: For every host 'i' listed in Statevm_vs.

Step 13: If virtual machine ' is active, then

Step 14 IF [Mifvsry () <VMisncoun) then

Step 15: Set Hostppmn = Hostgy (i)

Step 16 Set j€ Current_ VAt count

Step 17: End of all if conditional block

Step 18: for If j=—1 then

Step 19: Add the task to the waiting list until one of the VM=
becomes available, else

Step 20: Record that they arrived task is assigned to VM (j)

Step 21: Allocation details, including the current processing time of
hosts and VMs, as well as the number of tasks being handled, are
updated to verify the availability of resources.

Step 22: The task is released from the VM upon completion ofits
execution.

Step 23: The system updates de-allocation metrics such as the

processing time of the host and VM, and the number of active tasks.
to reassess respurce availahility.

Step 24: End If

Shameer A P et al. / Kuey, 27(4), 9763 1363

5. PERFORMANCE ANALYSIS

The proposed DE-ABCA-LB approach was evaluated through simulation experiments using CloudSim, a
widely adopted framework for modeling and modeling task scheduling in extensive cloud computing systems.
In this study, CloudSim was utilized to replicate the allocation and management of computing resources and
virtual machines, allowing for a comprehensive assessment of the DE-ABCA-LB scheme’s effectiveness. The
simulation environment was configured with 25 virtual machines, 15 data centers, and task loads ranging
from 50 to 1000. Task lengths used in the evaluation varied between 2000 and 10000 Million Instructions
(MI). Additionally, the key parameters utilized in the simulation of the DE-ABCA-LB approach are
summarized in Table 1.

Tvpe P arameter Value
Diata Center VI Scheduler Time-Shared
Mumber of Hoztz 02-04
Mumber of Data Centerz 10
Virtual Machine (VIVD Cloudlzt Scheduler Tima-Sharsd
Bandwidth S00-1000
Bz quirad Number of Processor Elements 01-02
Speed of the Processor A000-2000 WAES
Mumber of VIVE 30
Memory Space Available in Each VIV 2562018 b
Cloudlets (Tasks) Mumber of Tasks 100-1000
Tazk Length 2000-200:00

Table 1: Simulation Parameters Used for proposed approach

This section examines the performance efficiency of the DE-ABCA-LB approach through a comprehensive set
of analytical evaluations, emphasizing the following key areas:

i) average response time across different task volumes and instruction lengths,

ii) comparison of average response time, instruction length, and execution time against traditional
algorithms,

iii) analysis of the same metrics in comparison with swarm intelligence-based algorithms,

iv) Task migration count increases with more virtual machines when the total number of tasks remains the
same

v) task migration count as the number of tasks increases with a fixed number of virtual machines.

5.1 Performance Evaluation Using Mean Response Time with Task Varying

This section investigates the effectiveness of the DE-ABCA-LB approach by examining the mean response
time across varying numbers of tasks and instruction sizes within a cloud infrastructure. Figures 2 and 3
illustrate the performance of the DE-ABCA-LB method, showcasing the mean response time (in seconds) as
the “number of tasks and instruction” sizes (in bytes) change. When the instruction length is set to 2000, the
“mean response time” of the proposed scheme increases from 7.24 seconds to 19.21 seconds as the task count
rises from 100 to 1000. Likewise, the mean RT of the DE-ABCA-LB approach with executable instruction
length of 8000 is proved to increase from 7.46 seconds to 40.64 seconds with increasing tasks. Further, the
mean RT of the DE-ABCA-LB approach with “executable instruction” length of 14000 is proved to increase
from 7.82 seconds to 71.24 seconds with increasing tasks. Furthermore, when the “executable instruction”
length is set to 20,000, the mean RT of the proposed work is observed to rise consistently from 8.12 seconds
to 98.42 seconds as the number of tasks steadily increases.

nder

1364 Shameer A P et al. / Kuey, 27(4), 9763

100 -
~—tp— 2000-LENGTH OF INSTRUCTION :
20 P BODOD-LENGTH OF INSTRUCTION :
—&— 14000-LENGTH OF INSTRUCTION :
% 80| —9— 20000-LENGTH OF INSTRUCTION :
= : v i ; : :
g T70p------- Fomeeee- Feeemman Fomemene Feemeean S iy SETEEE Feeees
& : : :
€ B0f------- P P Phosanas e Yooisas A
= : : .
5" 50 - , con ,’ . b
5) .
u%; ¥y O e e P /Y/ . ".,q
; ") || AR ST S Z,-—"-i«:‘.?._ | SRR S -
LE‘ 20 b g
10

400 500 600 700 800 900 1000

INCREASING NUMBER OF TASKS

0 i i
100 200 300

Figure 2: Mean RT under Varying #of Task

= TS TN S S S S
—@— 700-TASKS | : : - S
| == 100D-TASKS | : : ; &

804 " — B e e e e & .t

(Seconas)

NEAN RESPONSE TIVME

i i

1 i 1 i 1
Z‘C::‘ 400 800 800 1000 1200 1400 1600 1800 2000
INCREASING NUMBER OF EXECUTABLE INSTRUCTION LENGTH

Figure 3: Mean RT under variety Execution Instruction Length

This increase in the response time under different executable instruction length independent to the increase
in the tasks submitted to the workflow is mainly due the significant increase in the system load. Figure 3
illustrates the trend in average “response time” for the proposed work as the number of executable
instructions increases. For 200 tasks, the response time rises from 18.42 seconds to 21.76 seconds as the
instruction length ranges from 200 to 2000. The number of tasks is increased to 400, the response time
similarly grows, starting at 19.21 seconds and reaching 25.12 seconds. With 700 tasks, a more substantial
increase is observed, with response times escalating from 18.44 seconds to 58.42 seconds. In the case of 1000
tasks, the delay becomes even more pronounced, growing from 21.32 seconds to 91.28 seconds. This
consistent increase in response time, irrespective of the task volume, is attributed to the design of the DE-
ABCA-LB scheme, particularly its policies for resource allocation and de-allocation, as well as its configured
threshold parameters.

6. COMPARATIVE STUDY WITH TRADITIONAL SCHEMES

This section presents a comparative evaluation of the DE-ABCA-LB scheme against three widely-used load
balancing strategies: Dynamic Load Balancing (DLB), “Throttled Load Balancing Algorithm (TLBA)”, and
“Weighted Round Robin (WRR)”. The analysis is based on two key parameters—task count and executable
instruction length—as both significantly affect system performance. Task volume is incremented from 200 to
2000, with corresponding “instruction lengths” ranging from 1000 to 10000. A threshold value of 0.1 is used,
as this point yielded the lowest standard deviation during performance evaluation. As illustrated in Figure 4,
the “mean response time” across all approaches is analyzed for varying task loads. The DE-ABCA-LB method
demonstrates superior performance, achieving reductions in mean response time of approximately 11.32%,
13.33%, and 14.52% when evaluated against DLB, TLBA, and WRR, respectively.

Shameer A P et al. / Kuey, 27(4), 9763 1365

| == PROPOSED DE-ABCA-LB
—P— BA-HB

=
0| —o— e ’/o)

o

MEAN RESPONSE TINE (Seconds)

800 200 1000

400 00 500 100
INCREASING NUMBER OF TASKS

300

Figure 4: Mean RT under Increasing # of Tasks

T0

—— PROPOSED DE-ABCALB| .+
p—DLB
so| —®— THROTILED.LBA

g | =—®—WRR
2 "
8 s0
.
=
W 20 perer
2
fn
&
g 3 ;
= 209 b

s '

K i 1 i

y 1 1
072 04 0.6 08 1 12 14 6 1.8 2
LENGTH OF EXECUTABLE INSTRUCTION PER TASK(bytes) . ¢

Figure 5: Mean RT under Different Executable Instruction Length

The enhanced performance in mean response time achieved by the DE-ABCA-LB algorithm is largely due to
its capacity to adapt to varying loads across virtual machines (VMs), respond to dynamic changes in VM
availability, and efficiently allocate tasks to the least burdened VMs. As shown in Figure 5, the average
response times of DE-ABCA-LB, DLB, Throttled-LBA, and WRR are compared across increasing executable
instruction lengths ranging from 1000 to 10000. The findings indicate that DE-ABCA-LB consistently
outperforms the other methods, lowering response time by approximately 11.41%, 12.41%, and 13.61%
relative to DLB, Throttled-LBA, and WRR, respectively. This performance gain can be credited to the
algorithm's ability to prevent both overloading and underutilization of VMs. Furthermore, as depicted in
Figure 6, the average execution time for the same set of algorithms is evaluated with task counts ranging
from 100 to 1000. The DE-ABCA-LB technique consistently outperforms the alternatives, achieving
execution time reductions of 12.11%, 13.47%, and 15.21% over DLB, Throttled-LBA, and WRR, respectively.
This enhanced performance is largely due to the scheme’s efficient use of computational resources, enabling
a more balanced and optimized distribution of workload across available VMs.

7. COMPARATIVE INVESTIGATION WITH DIFFERENT SCHEMES

The DE-ABCA-LB approach is evaluated against three swarm based load balancing algorithms: “Honey Bee-
based Load Balancing (LBA-HB)”, “Honey Bee Behavior-inspired Load Balancing (HBB-LB)”, and the ABC-
LB approach. The analysis considers varying numbers of tasks, ranging from 200 to 2000, and “executable
instruction lengths” from 1000 to 10000, with a threshold of 0.1. Figure 6 presents the average response
times for “LBA-HB, HBB-LB, and ABC-LB” under these conditions. The DE-ABCA-LB approach
demonstrates an ability to reduce mean response times by up to 11.22%, 12.56%, and 13.78% relative to the
“LBA-HB, HBB-LB, and ABC-LB” schemes, respectively. This improvement is largely attributed to the
efficient allocation of requests to virtual machines, which ensures that the variance in processing times
remains within a predefined limit.

1366 Shameer A P et al. / Kuey, 27(4), 9763

" | == PROPOSED DE-ABCA-LB
- —P— LBA-HB : v
Y| —— EE-LE
= —t— ABC-LE
E 140
.S: '
¥
J_f 12
W 100
2
&
#
¥
-
)) e () o ("
400 500 500 700 BOD Q00 1000
INCREASING NUMBER OF TASKS
Figure 6: Mean RT under Increasing #Tasks
90 ; s
—p— PROPOSED DE-ABCA.LB H . . :
on| =——1LBAHB] : ’ /"/T
| —e—HBBE.LS : : ¥
7 —— ABCAS : R
§ 7 > v »> . —— .,/;/ '
% ‘/ : & [
; TR S S S RTE RIS AT B o A et S \g‘ '_u -
: ~ i
S i i i S e NPT oo Sy
: s b
z T ' 3 : : :
z T SR P d asasehasasain Pyr— — ‘
. i [€ ; 2 | ¢ X
1-}/‘; 1 i i i I i i
02 04 05 08 1 12 14 16 18 2
LENGTH OF EXECUTABLE INSTRUCTION PER TASK(bytes) < 10"

Figure 7: # executable instruction length varying

Figure 7 illustrates the average response times for the “DE-ABCA-LB, LBA-HB, HBB-LB, and ABC-LB”
algorithms, as the executable instruction length ranges from 1000 to 10000. The DE-ABCA-LB consistently
outperforms the others, with response time reductions of approximately 9.02%, 10.12%, and 12.74%
compared to LBA-HB, HBB-LB, and ABC-LB, respectively. This advantage stems from its ability to minimize
load distribution fluctuations across virtual machines, thus reducing variability in VM utilization. This
efficiency is due to its adaptive threshold mechanism, which helps ensure a balanced workload distribution
by controlling load variations across VMs.

8. CONCLUSION

This study introduced the DE-ABCA-LB load balancing method, which combines the strengths of Differential
Evolution (DE) and Artificial Bee Colony (ABC) methods to efficiently allocate virtual machines (VMs) and
hosts for incoming tasks in a cloud environment. The DE-ABCA-LB scheme exhibits significant advantages in
reducing mean response time. When tested on task volumes ranging from 100 to 1000, it achieved reductions
in response time of 8.02%, 10.12%, and 12.84% with respect to the LBA-HB, HBB-LB, and ABC-LB schemes,
respectively. Similar positive results were obtained when the executable instruction length varied from 1000
to 10000, underscoring the scheme's stable performance across different workloads. Additionally, the
scheme significantly improved mean execution time, outperforming the LBA-HB, HBB-LB, and ABC-LB
algorithms by 11.54%, 12.36%, and 14.64%, respectively, as task volumes increased from 100 to 1000. In
terms of task migration efficiency, DE-ABCA-LB showed notable effectiveness. With the number of VMs
increasing from 2 to 10, the scheme reduced task migrations by 5.52%, 5.81%, and 6.84% compared to LBA-
HB, HBB-LB, and ABC, respectively. Under task volumes ranging from 100 to 1000 with a stable number of
VMs, task migrations decreased by 3.85%, 4.68%, and 5.32%, respectively. These outcomes demonstrate the
robustness and flexibility of the DE-ABCA-LB scheme in managing load distribution and minimizing
overhead in dynamic cloud environments.

Shameer A P et al. / Kuey, 27(4), 9763 1367

10.

11.

12.

REFERENCES

Alnusairi T. S., Shahin A. A., and Daadaa Y., (2018), Binary PSOGSA for Load Balancing Task
Scheduling in Cloud Environment, Arxiv Preprint Arxiv:1806.00329.

. Boukerche A., Guan S., and De Grande R. E., (2018), A Task-Centric Mobile Cloud-Based System to

Enable Energy-Aware Efficient Offloading, IEEE Transactions on Sustainable Computing, 3(4),248—-261.
Canali C., Chiaraviglio L., Lancellotti R., and Shojafar M., (2018), Joint Minimization of the
Energy Costs From Computing, Data Transmission, and Migrations in Cloud Data Centers, IEEE
Transactions on Green Communications and Networking, 2(2), 580—595.

. Chaudhary D. and Kumar B., (2018), A New Balanced Particle Swarm Optimisation for Load

Scheduling in Cloud Computing, Journal of Information & Knowledge Management, 17(01), 1850009.
Du J., Zhao L., Feng J., and Chu X., (2018), Computation Offloading and Resource Allocation in
Mixed Fog/Cloud Computing Systems with Min-Max Fairness Guarantee, IEEE Transactions on
Communications, 66(4), 1594—1608.

. Fahim Y., Rahhali H., Hanine M., Benlahmar E.-H., Labriji E.-H., Hanoune M., and Eddaoui

A., (2018), Load Balancing in Cloud Computing Using Meta-Heuristic Algorithm, Journal of Information
Processing Systems,14(3).

Gai K., Qiu M., Zhao H., and Sun X., (2017), Resource Management in Sustainable Cyber-Physical
Systems Using Heterogeneous Cloud Computing, IEEE Transactions on Sustainable Computing, 3(2),
60-72.

. Acharya J., Mehta M., and Saini B., Particle Swarm Optimization Based Load Balancing in Cloud

Computing, In International Conference on Communication and Electronics Systems). IEEE, 2016, 1—4.

. Ab Wahab M. N., Nefti-Meziani S., and Atyabi A., (2015), A Comprehensive Review of Swarm

Optimization Algorithms, PloS one, 10(5),e0122827.

Abdelmaboud A., Jawawi D. N., Ghani I., Elsafi A., and Kitchenham B., (2015), Quality of Service
Approaches in Cloud Computing: A Systematic Mapping Study, Journal of Systems and Software, 101,
159-179.

A.P. Shameer and A.C. Subhajini (2017) Optimization Task Scheduling Techniques on Load Balancing in
Cloud Using Intelligent Bee Colony Algorithm.” International Journal of Pure and Applied Mathematics ,
Volume 116 No. 22 2017, 341-352

A.P. Shameer and A.C. Subhajini (2019) Quality of Service Aware Resource Allocation Using Hybrid
Opposition-Based Learning-Artificial Bee Colony Algorithm. “Journal of Computational and Theoretical
Nanoscience Vol. 16, 588—594, 2019

