
Copyright © 2022 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2022, 28(2), 293 - 301
ISSN: 2148-2403

https://kuey.net/ Research Article

Adaptive Cloud Load Balancing Using Opposition-
Learning- Artificial Bee Colony Optimization

Shameer A P1*, Haseeb V V2

1*Department of Computer Science, NAM College Kallikkandy, Kannur, Kerala, India, 670693; shameerap@gmail.com
2Department of Computer Science, NAM College Kallikkandy, Kannur, Kerala, India, 670693, haseebvvs@gmail.com

Citation: Shameer A P, et.al (2022). Adaptive Cloud Load Balancing Using Opposition- Learning- Artificial Bee Colony Optimization,
Educational Administration: Theory and Practice, 28(2) 293 - 301
Doi: 10.53555/kuey.v28i02.9815

ARTICLE INFO ABSTRACT
 The increasing complexity and scale of cloud computing environments demand

intelligent strategies for managing workloads across distributed resources. Load
balancing plays a pivotal role in ensuring that computational tasks are efficiently
allocated to available servers, thereby improving performance, reducing latency,
and maintaining service reliability. This paper introduces an enhanced
metaheuristic approach for cloud load balancing by combining the Artificial Bee
Colony (ABC) algorithm with Opposition Learning (OL). While ABC provides a
biologically inspired mechanism for optimization, its performance may degrade
in high-dimensional or rapidly changing scenarios due to premature convergence.
The integration of OL enhances the exploration capability of the algorithm by
considering opposite candidate solutions during the search process, increasing
the chances of escaping local optima. This research presents a comprehensive
overview of the OLABCA-LB framework, proposed as an effective solution for
dynamic load balancing within cloud environments. The study introduces a
detailed mathematical model along with the key parameters integrated into the
fitness function design, which collectively guide the balanced allocation of
computational tasks across physical hosts and virtual machines. The paper also
outlines the simulation environment, describing the setup and configuration used
to evaluate the proposed algorithm. Performance analysis is conducted under
varying conditions, including different task volumes, instruction lengths, and
scales of virtual machine deployment, to validate the robustness and scalability of
the OLABCA-LB approach.

1. INTRODUCTION

The rapid evolution of cloud computing has fundamentally transformed the paradigm of distributed
computing by providing scalable and elastic resource provisioning tailored to varying user needs. Cloud
environments host numerous applications and services with diverse workloads, often under dynamic and
unpredictable user demands. In such settings, load balancing emerges as a crucial technique to ensure the
efficient utilization of cloud resources, maintain service quality, and reduce operational costs. Cloud load
balancing refers to the strategic distribution of incoming tasks or network traffic across multiple computing
instances or servers in a cloud infrastructure. Its primary objective is to prevent resource bottlenecks, avoid
overloading specific nodes, and maintain high availability and reliability of services. An effective load
balancing mechanism not only improves system throughput and response time but also plays a vital role in
energy efficiency and cost optimization by minimizing idle or underutilized resources. By enabling scalable
resource allocation via the internet, cloud computing has transformed the way organizations handle data
management, processing, and storage. A key challenge in cloud computing is effectively managing load
balancing—this entails distributing tasks uniformly across various computing nodes to enhance resource
efficiency, reduce latency, and maintain system dependability. To address this, bio-inspired optimization
algorithms have gained increasing attention. Among these, the ABC algorithm, inspired by the foraging
behavior of honey bees, stands out for its simplicity and effectiveness in handling complex optimization
problems. However, standard ABC can sometimes suffer from slow convergence and premature stagnation in
local optima. To overcome these limitations, the integration of OL into the ABC algorithm has been
proposed. OBL enhances the algorithm’s exploration ability by simultaneously evaluating a candidate
solution and it’s opposite, thereby accelerating convergence and improving the chances of finding a global

https://kuey.net/
mailto:shameerap@gmail.com

294 Shameer A P et.al / Kuey, 28(2), 9815

optimum. The OLABCA-LB framework is developed through the integration of OBL with the ABC
metaheuristic, aiming to enhance both the initial population diversity and the exploration–exploitation
balance within the search space. This hybrid method is specifically designed to optimize load balancing
across virtual machines in cloud environments. By embedding the principles of opposition learning, the
algorithm strengthens its ability to explore potential solutions more effectively and adaptively during the
optimization process. In this work, the fitness function is carefully constructed to incorporate multiple
critical parameters—energy consumption, makespan, response time, data center operational cost, and the
degree of resource imbalance. By considering these factors, the proposed approach achieves a more robust
and efficient allocation of cloud workloads, supporting dynamic and scalable resource management.

The proposed OLABCA-LB framework is designed to address three key objectives in cloud
resource management:
1. It facilitates effective load distribution by classifying VMs into overloaded and under loaded categories,
ensuring balanced task allocation across the infrastructure.
2. It emphasizes energy efficiency within data centers by identifying opportunities to reduce power
consumption, ultimately lowering operational costs.
3. It identifies underutilized VMs within the data center, enabling a dynamic transition of these machines
from an active state to a low-power or sleep mode when appropriate.

The proposed approach also demonstrates the ability to accelerate convergence speed while enhancing the
solution quality, thereby enabling more effective and timely load balancing within the cloud infrastructure.
Furthermore, it introduces a strategy for defining upper and lower threshold values based on key workload
characteristics. These thresholds act as indicators for detecting overutilization and underutilization of VMs,
determined by analyzing the volume and distribution of incoming tasks. This dynamic thresholding
mechanism supports more responsive and informed resource management, ensuring that the system adapts
efficiently to fluctuating workloads.

2. FRAMEWORK OF THE OLABCA-LB SYSTEM
The implementation of the OLABCA-LB system involves the following structured steps.
Step 1: Generate an initial population using random initialization techniques.
Step 2: Derive the opposite population by applying the generalized OL approach.
Step 3: Select the top NS solutions based on fitness from the initial population P, combine them with the
opposition population OP, and treat the merged set as the updated initial population.
Step 4: This phase integrates the Generalized OB with Differential Evolution (DE) to enhance global
optimization efficiency. Accordingly, when a randomly generated value rand (0,1) is less than the predefined
opposition probability OP, the opposition population corresponding to the search space is generated using
the GODE strategy.
Step 5: In this stage, the onlooker bee selects a promising solution by evaluating the fitness probability,
which is influenced by the fitness values obtained by each employed bee. Upon generating a new candidate
solution, the onlooker bee updates its current solution if the newly generated one offers better fitness.
Step 6: During the onlooker bee phase, an enhanced strategy is applied that merges the search equation
with the mutation mechanism from DE. At this point, the modification rate is dynamically adapted according
to the current iteration count. This dynamic adjustment promotes greater exploration during the early stages
of the algorithm and enhances exploitation as the algorithm approaches convergence.
Step 7: Any solution that remains unchanged over a predefined number of iterations is considered
abandoned. This solution is then reinitialized and passed to the scout bee for exploration. If an update for the
abandoned solution is detected, it is replaced with a randomly generated solution during the current
iteration.
Step 8: The algorithm terminates once the stopping condition is met; otherwise, the process loops back to
Step 2 for continued optimization.

3. ALGORITHM OF THE OLABCA-LB SCHEME
The OLABCA-LB system employs a multi-objective approach to manage the distribution and redistribution
of either new and existing tasks across suitable VMs or hosts. A fundamental aspect of task allocation
involves adhering to key constraints, notably ensuring that a VM's workload exceeds a defined upper limit
once a task is assigned. When a significant number of VMs are available, the task scheduling process also
considers task deadlines to enhance overall performance. Furthermore, the system facilitates task migration
from VMs experiencing high loads to those with lower loads, with this decision being guided by the task's
deadline requirements or its anticipated completion time. Specifically, when dealing with tasks that are
expected to take a long time to finish, the system prioritizes VMs that are currently handling tasks with the
earliest deadlines. Conversely, for tasks with average expected completion times, preference is given to VMs
that are processing tasks with moderate to longer deadlines. VMs are dynamically grouped based on current
load conditions. Two distinct groups are formed: overloaded and under loaded VM groups determined using
the objective function. Tasks are moved from VMs within the overloaded group, and these VMs temporarily

295 9815), 2(28/ Kuey, et.al Shameer A P

cease processing tasks until a suitable VM is identified for reassignment in subsequent iterations.
Simultaneously, under loaded VMs are assigned pending tasks or those designated for reallocation. This
process of task redistribution continues iteratively until all under loaded VMs have received tasks.
The OLABCA-LB framework is designed to achieve three primary goals:
i) To enhance load balancing by categorizing VMs into overloaded and underloaded groups.
ii) To improve energy efficiency by decreasing energy consumption and operational costs within the data
center.
iii) To identify underutilized VMs that are suitable for transitioning from active to sleep states.
The system also incorporates dynamic management of VM power states -ON/OFF- based on their utilization
levels and predefined energy thresholds. Virtual machines are automatically transitioned to a sleep mode
when their workload falls below a specified lower limit and are reactivated when the load exceeds an upper
threshold. This dynamic state management optimizes energy consumption and operational efficiency within
the data center.

4. SIMULATION SETUP
The performance of the OLABCA-LB scheme was rigorously assessed through simulations conducted using
the CloudSim toolkit. CloudSim played a pivotal role in modeling and simulating various operations,
enabling a comprehensive study of the scheme’s effectiveness under dynamic and resource-variant cloud
conditions. To evaluate scalability and adaptability, the OLABCA-LB scheme was tested across diverse
configurations involving multiple hosts, data centers, and VMs. The simulation setup included 20 data
centers, 100 virtual machines (VMs), and a dynamic workload comprising between 500 and 1000 tasks. For
performance analysis, the instruction lengths of tasks were defined within the range of 2,000 to 20,000 MI,
simulating heterogeneous workloads. Additionally, the critical simulation parameters employed for
evaluating the OLABCA-LB scheme are detailed in Table 1, providing a clear foundation for replicability and
benchmarking

Table 1: Parameters Used for the proposed Scheme

5. SIMULATION OUTCOMES AND ANALYSIS
This part of the study evaluates the performance of the OLABCA-LB load balancing scheme by analyzing how
the mean response time is affected by variations in both the number of tasks and the length of executable
instructions within a cloud computing setup. Figures 1 and 2 present the response trends observed across
different configurations. When the instruction length is set to 1000 bytes, the average response time rises
from 7.21 seconds with 200 tasks to 22.32 seconds with 2000 tasks. Increasing the instruction length to
7000 bytes leads to a response time range of 7.85 to 44.37 seconds over the same task interval. For
instruction lengths of 15000 bytes and 20000 bytes, the mean response time increases from 8.02 to 85.31
seconds and 7.02 to 101.21 seconds, respectively, as the task volume increases. This upward trend in response
time across larger task loads and instruction sizes is primarily influenced by the threshold-based mechanism
embedded in the OLABCA-LB scheme. These thresholds are designed to detect over-utilization and under-
utilization in cloud resources, impacting how tasks are scheduled and managed as the system load grows.

296 Shameer A P et.al / Kuey, 28(2), 9815

Figure 1: Mean Response Time under number of tasks

Figure 2: Standard deviation under different threshold values

In Figure 2, the OLABCA-LB scheme's average response time increases as the executable instruction length
grows, depending on the number of tasks being processed. When handling 100 tasks, the response time rises
from 18.01 seconds with a 100-instruction length to 31.22 seconds with a 1000-instruction length. Similarly,
for 300 tasks, the response time increases between 21.35 seconds and 42.11 seconds. With 600 tasks, the
response time escalates from 26.02 to 63.31 seconds, and for 1000 tasks, it extends from 33.74 to 91.44
seconds. This pattern is due to the adaptive nature of the OLABCA-LB scheme's load balancing process,
which adjusts according to instruction length by using set threshold values to ensure system effectiveness.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

INCREASING NUMBER OF TASKS

M
E

A
N

 R
E

S
P

O
N

S
E

 T
IM

E
 (

S
e
c
o
n
d
s
)

2000-LENGTH OF INSTRUCTIONS

8000-LENGTH OF INSTRUCTIONS

14000-LENGTH OF INSTRUCTIONS

20000-LENGTH OF INSTRUCTIONS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10

20

30

40

50

60

70

INCREASING NUMBER OF EXECUTABLE INSTRUCTION LENGTH

M
E

A
N

 R
E

S
P

O
N

S
E

 T
IM

E
 (

S
e
c
o
n
d
s
)

200-TASKS

400-TASKS

700-TASKS

1000-TASKS

297 9815), 2(28/ Kuey, et.al Shameer A P

5.2 Performance over benchmarked swarm intelligent schemes
This section delivers a comparative performance analysis of the proposed OLABCA-LB with three established
swarm intelligence-based load balancing approaches: ABC-LB, PSO-LB, and DE-LB. The evaluation
considers two key variables—the number of tasks and the length of executable instructions. The experimental
setup involves varying the number of tasks from 100 to 1000, with the instruction length proportionally
increasing from 1000 to 10000. A fixed threshold of 0.1 was consistently applied during the evaluation
process. As illustrated in Figure 3, OLABCA-LB consistently records a lower average response time compared
to its counterparts. Specifically, it achieves performance improvements of 11.24%, 11.55%, and 11.98% when
measured against PSO-LB, DE-LB, and ABC-LB, respectively. These enhancements are largely attributed to
the incorporation of adaptive upper and lower threshold strategies, which enable more effective workload
distribution across virtual machines, thereby reducing latency and improving system responsiveness.

Figure 3: Average Response Time Across Varying Task Loads

Figure 4: Instruction Length on Average Response Time

100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

160

INCREASING NUMBER OF TASKS

M
E

A
N

 R
E

S
P

O
N

S
E

 T
IM

E
(S

e
c
o
n
d
s
)

PROPOSED OLABCA-LB

ABC-LB

PSO-LB

DE-LB

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

20

40

60

80

100

120

140

INCREASING EXECUTABLE INSTRUCTION LENGTHS(bytes)

M
E

A
N

 R
E

S
P

O
N

S
E

 T
IM

E
(S

e
c
o
n
d
s
)

PROPOSED OLABCA-LB

ABC-LB

PSO-LB

DE-LB

298 Shameer A P et.al / Kuey, 28(2), 9815

Figure 5: Proposed Mean response time under number of tasks

Figure 4 illustrates the average response time performance of the OLABCA-LB, ABC-LB, PSO-LB, and DE-LB
algorithms across a range of instruction lengths, varying from 1000 to 10000. The data clearly shows that the
OLABCA-LB approach consistently delivers superior efficiency, with reductions in mean response time by
7.88%, 8.14%, and 9.44% in comparison to ABC-LB, PSO-LB, and DE-LB, respectively. This improvement
stems from the algorithm's ability to dynamically manage and minimize standard deviation in load
allocation, resulting in more balanced task distribution among virtual machines. In Figure 5, the analysis
shifts focus to the average execution time, when the task load expands from 200 to 2000. The OLABCA-LB
work again demonstrates its effectiveness, achieving execution time savings of 9.04%, 10.33%, and 12.56%
over ABC-LB, PSO-LB, and DE-LB respectively. These gains are primarily attributed to the implementation
of reactive thresholding mechanisms, which intelligently adjust upper and lower bounds to mitigate load
imbalance and improve overall system throughput.

The effectiveness of the OLABCA-LB strategy is further evaluated by observing how the number of task
migrations changes as the number of VMs increases. As shown in Figures 6 and 7, which depict the results
for task loads of 100 and 500 respectively, the proposed method consistently outperforms alternative
strategies across different VM configurations. The results reveal that OLABCA-LB substantially reduces task
migration, even as the number of VMs grows. This improvement stems from the algorithm’s use of adaptive
upper and lower thresholds for resource availability, which enhances the flexibility and efficiency of VM
allocation and de-allocation during load balancing. In the scenario involving 100 tasks, OLABCA-LB achieves
significant reductions in task migrations—outperforming ABC-LB, PSO-LB, and DE-LB by 7.22%, 8.76%, and
9.54%, respectively. These findings highlight the method’s capacity to maintain optimal task distribution
while avoiding unnecessary migrations, contributing to greater system efficiency and stability.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

INCREASING NUMBER OF TASKS

M
E

A
N

 E
X

E
C

U
T

IO
N

 T
IM

E
(S

e
c
o
n
d
s
)

PROPOSED OLABCA-LB

ABC-LB

PSO-LB

DE-LB

299 9815), 2(28/ Kuey, et.al Shameer A P

Figure 6: Task Migrations Under Varying VM Count (200 Tasks)

Figure 7: Task Migrations Under Varying VM Count (400 Tasks)

0

5

10

15

20

25

3 4 5 6 7 8

N
U

M
B

ER
 O

F
M

IG
R

A
TE

D
 T

A
SK

S

INCREASING NUMBER OF VMs

ABC-LB PSO-LB DE-LB PROPOSED OLABCA-LB

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8

N
U

M
B

ER
 O

F
M

IG
R

A
TE

D
 T

A
SK

S

INCREASING NUMBER OF VMs

ABC-LB PSO-LB DE-LB PROPOSED OLABCA-LB

300 Shameer A P et.al / Kuey, 28(2), 9815

Figure 8: Migration of Tasks with Increasing Task Count (VMs = 2)

Figure 9: Migration of Tasks with Increasing Task Count (VMs = 4)

To assess the performance of the OLABCA-LB scheme, an analysis was conducted on task migration behavior
as the overall task volume increased. Figures 8 and 9 present the results for two configurations, using 2 and 4
VMs, respectively. The findings highlight the OLABCA-LB scheme's ability to substantially lower the number
of task migrations across both scenarios, even under growing workload conditions. This notable
improvement stems from the scheme’s adaptive strategy for allocating and releasing resources, which
dynamically reacts to load balancing thresholds. When operating with 2 VMs, OLABCA-LB achieves a
reduction in task migrations by 4.77%, 5.08%, and 6.84% contrasted with the ABC-LB, PSO-LB, and DE-LB
methods, respectively. The advantage becomes even more pronounced with 4 VMs, where reductions of
5.92%, 6.94%, and 7.86% are observed against the same benchmark algorithms.

CONCLUSION

This proposed work has provided a comprehensive overview of the OLABCA-LB load balancing framework,

0

1

2

3

4

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

N
U

M
B

ER
 O

F
M

IG
R

A
TE

D
 T

A
SK

S

INCREASING NUMBER OF TASKS

ABC-LB PSO-LB DE-LB PROPOSED OLABCA-LB

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

N
U

M
B

ER
 O

F
M

IG
R

A
TE

D
 T

A
SK

S

INCREASING NUMBER OF TASKS

ABC-LB PSO-LB DE-LB PROPOSED OLABCA-LB

301 9815), 2(28/ Kuey, et.al Shameer A P

which integrates Oppositional Learning with the Artificial Bee Colony optimization technique to enable
dynamic and adaptive task allocation across hosts and virtual machines. Experimental results evaluating the
mean response time across task loads ranging from 100 to 1000 demonstrate that OLABCA-LB consistently
outperforms baseline algorithms, reducing response time by 7.86%, 8.06%, and 9.68% when compared to
ABC-LB, PSO-LB, and DE-LB, respectively. Furthermore, tests using varying instruction lengths—from
2,000 to 10,000 units—highlight the scheme’s effectiveness, yielding response time improvements of 7.62%,
8.04%, and 10.44% against the same set of comparative methods. In terms of mean execution time, as task
volume scales from 100 to 1000, the OLABCA-LB approach achieves reductions of 7.94%, 8.04%, and
10.22%, reinforcing its efficiency over ABC-LB, PSO-LB, and DE-LB. In addition, the scheme significantly
minimizes task migration. For scenarios where the number of VMs increases from 2 to 10 under different
task loads, OLABCA-LB reduces migrations by 5.86%, 6.74%, and 7.62%. Similarly, when the task count is
increased from 100 to 1000 under varying VM configurations, the scheme demonstrates further reductions
of 3.22%, 4.68%, and 5.31%, showcasing its adaptability and optimization strength relative to existing
baseline methods.

REFERENCES

1. A.P. Shameer and A.C. Subhajini (2024) OABC scheduler: a multi-objective load balancing-based task

scheduling in a cloud environment, “Int. J. Advanced Intelligence Paradigms, Vol. 27, Nos. 3/4, 2024
2. A.P. Shameer and A.C. Subhajini (2019) Quality of Service Aware Resource Allocation Using Hybrid

Opposition-Based Learning-Artificial Bee Colony Algorithm. “Journal of Computational and Theoretical
Nanoscience Vol. 16, 588–594, 2019

3. Shameer A P, Haseeb V V, Minimol V K, Reshma P K, Aneesh Kumar K(2023) Enhanced Cloud Load
Balancing With MPSOA- LB: A Multi-Objective PSO Approach for Dynamic Task Allocation and
Performance Optimization,” International Journal of Intelligent Systems and Applications in Engineering
IJISAE, 2023, 11(1), 445–458

4. Shameer A P and Minimol V K, (2021) ,”An Optimized Cloud Load Balancing Approach Using Hybrid
DE-ABC Algorithms”. Educational Administration: Theory and Practice 2021, 27(4), 1361-1367

5. Alnusairi T. S., Shahin A. A., and Daadaa Y., (2018), Binary PSOGSA for Load Balancing Task Scheduling in
Cloud Environment, Arxiv Preprint Arxiv:1806.00329.

6. Boukerche A., Guan S., and De Grande R. E., (2018), A Task-Centric Mobile Cloud-Based System to
Enable Energy-Aware Efficient Offloading, IEEE Transactions on Sustainable Computing, 3(4), 248–261.

7. Canali C., Chiaraviglio L., Lancellotti R., and Shojafar M., (2018), Joint Minimization of the Energy Costs
From Computing, Data Transmission, and Migrations in Cloud Data Centers, IEEE Transactions on
Green Communications and Networking, 2(2), 580–595.

8. Chaudhary D. and Kumar B., (2018), A New Balanced Particle Swarm Optimisation for Load Scheduling
in Cloud Computing, Journal of Information & Knowledge Management, 17(01), 1850009.

9. Du J., Zhao L., Feng J., and Chu X., (2018), Computation Offloading and Resource Allocation in Mixed
Fog/Cloud Computing Systems with Min-Max Fairness Guarantee, IEEE Transactions on
Communications, 66(4), 1594–1608.

10. Fahim Y., Rahhali H., Hanine M., Benlahmar E.-H., Labriji E.-H., Hanoune M., and Eddaoui A., (2018),
Load Balancing in Cloud Computing Using Meta-Heuristic Algorithm, Journal of Information Processing
Systems, 14(3).

11. Gai K., Qiu M., Zhao H., and Sun X., (2017), Resource Management in Sustainable Cyber-Physical
Systems Using Heterogeneous Cloud Computing, IEEE Transactions on Sustainable Computing, 3(2),
60–72.

12. Acharya J., Mehta M., and Saini B., Particle Swarm Optimization Based Load Balancing in Cloud
Computing, In International Conference on Communication and Electronics Systems). IEEE, 2016, 1–4.

13. Ab Wahab M. N., Nefti-Meziani S., and Atyabi A., (2015), A Comprehensive Review of Swarm
Optimization Algorithms, PloS one, 10(5), e0122827.

14. Abdelmaboud A., Jawawi D. N., Ghani I., Elsafi A., and Kitchenham B., (2015), Quality of Service
Approaches in Cloud Computing: A Systematic Mapping Study, Journal of Systems and Software, 101,
159–179.

15. A.P. Shameer and A.C. Subhajini (2017) Optimization Task Scheduling Techniques on Load Balancing in
Cloud Using Intelligent Bee Colony Algorithm.” International Journal of Pure and Applied Mathematics “,
Volume 116 No. 22 2017, 341-352

16. Sengathir Janakiraman, M. Deva Priya."Improved Artificial Bee Colony UsingMonarchy Butterfly
Optimization Algorithmfor Load Balancing (IABC-MBOA-LB) in Cloud Environments", Journal of
Network and Systems Management, Volume 29 , Issue 4 Oct 2021

	1. INTRODUCTION
	4. SIMULATION SETUP
	5. SIMULATION OUTCOMES AND ANALYSIS
	CONCLUSION

