
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Educational Administration: Theory and Practice 
2024, 30(11), 1755-1765 
ISSN: 2148-2403 

https://kuey.net/                              Research Article 

 

Design and Evaluation of a Multi-Metric Machine 
Learning Model for Human Activities Reorganization with 

Emphasis on Specificity and Real Time Adaptability 
 

Mr. Pradeep Kumar Sharma1*, Dr. Harsh Mathur2 
 

1*Computer Science & Engineering PhD Scholar, RNTU Bhopal, India 
2Computer Science & Engineering Guide, RNTU Bhopal, India  
 
Citation: Mr. Pradeep Kumar Sharma et al. (2024). Design and Evaluation of a Multi-Metric Machine Learning Model for Human 
Activities Reorganization with Emphasis on Specificity and Real Time Adaptability, Educational Administration: Theory and Practice, 
30(11) 1755-1765 
Doi: 10.53555/kuey.v30i11.9960 

 
ARTICLE INFO ABSTRACT 
 Human activity recognition (HAR) has emerged as a crucial area of research due 

to its widespread applications in various domains, including healthcare, smart 
environments, and assistive technologies. With the proliferation of wearable 
sensors and the Internet of Things (IoT), the ability to accurately sense and 
interpret human activities has become increasingly important. Machine learning 
models have played a pivotal role in advancing HAR systems, enabling the 
effective recognition of complex activities from sensor data. This research paper 
provides a comprehensive review of machine learning models employed for 
human activity recognition, encompassing both traditional techniques and state-
of-the-art deep learning approaches as well as a proposed approach. It discusses 
the challenges and considerations involved in activity recognition, such as data 
acquisition, feature extraction, and model selection. Additionally, the paper 
presents a comparative analysis of various machine learning models, evaluating 
their performance, strengths, and limitations across different activity recognition 
tasks and datasets and comparison among different machine learning models and 
proposed model. 

 
Keywords: Human Activities, Machine Learning Model, Sensing Technology, 
Activity Recognition, Proposed ML model. 

 

I. INTRODUCTION 
 
Human activity recognition (HAR) is the process of identifying and understanding the actions and 
behaviours of individuals based on sensor data. With the widespread adoption of wearable devices, smart 
home sensors, and the Internet of Things (IoT) technologies, there has been a growing interest in developing 
accurate and reliable HAR systems. These systems have numerous applications across various domains, 
including: 
1. Healthcare monitoring: HAR can facilitate remote monitoring of patients, enabling early detection of 

health issues and timely interventions. For instance, monitoring the daily activities of elderly individuals 
can help identify potential risks or changes in their mobility patterns, allowing for proactive care and 
support. 

2. Ambient assisted living: By recognizing activities of daily living (ADLs), such as cooking, cleaning, and 
personal hygiene, HAR systems can provide personalized assistance and automation in smart home 
environments, enhancing comfort and independence for individuals with disabilities or age-related 
challenges. 

3. Fitness tracking and coaching: Accurate recognition of physical activities, such as walking, running, 
cycling, and strength training, can enable personalized fitness tracking and coaching applications, 
providing users with tailored feedback and recommendations for achieving their fitness goals. 

4. Smart environment control: HAR can enable intelligent control and automation of systems in smart 
environments, such as adjusting lighting, temperature, or entertainment systems based on recognized 
activities, enhancing energy efficiency and user experience. 
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However, developing robust and accurate HAR systems poses several challenges. These challenges include 
dealing with noisy and incomplete sensor data, handling variations in activity patterns across individuals, 
and addressing the complexity of human activities that can involve multiple concurrent or interleaved 
actions. Moreover, the diversity of sensor modalities, ranging from wearable devices to environmental 
sensors, adds to the complexity of data processing and analysis. 
Machine learning techniques have emerged as powerful tools for addressing these challenges and enabling 
effective HAR systems. Traditional machine learning models, such as decision trees, support vector machines 
(SVMs), and random forests, have been widely employed for activity recognition tasks. These models have 
demonstrated promising results in recognizing activities from various sensor data sources, including 
accelerometers, gyroscopes, and physiological sensors. 
More recently, deep learning models, including convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), particularly long short-term memory (LSTM) networks, have gained significant attention 
in the field of activity recognition. These models have shown superior performance in capturing complex 
patterns and temporal dependencies in sensor data, enabling accurate recognition of intricate human 
activities. 
This research paper aims to provide a comprehensive review of machine learning models employed for 
human activity recognition. It will explore both traditional and state-of-the- art deep learning approaches, 
discussing their underlying principles, strengths, and limitations. Additionally, the paper will address key 
considerations in HAR, such as data acquisition, feature extraction, and model evaluation. By presenting a 
comparative analysis of various machine learning models and their performance in  activity recognition tasks 
across different datasets, this paper seeks to serve as a valuable resource for researchers and practitioners in 
the field. 
 

 
Fig 1. General workflow for human activity recognition using machine learning 

 
II. LITERATURE REVIEW: 

 
The literature on human activity recognition using machine learning models is extensive and spans various 
domains, including computer science, biomedical engineering, and ubiquitous computing. Researchers have 
explored a wide range of techniques, from traditional machine learning algorithms to cutting-edge deep 
learning models, to address the challenges of activity recognition. 
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Table 1 Comparison of traditional machine learning models for activity recognition: 

 
Table 2. Performance comparison of deep learning models on a benchmark dataset: 

Model Accuracy F1- Score Training 
Time 

Inference 
Time 

CNN 0.92 0.91 8 hours 12 ms 

LSTM 0.94 0.93 10 hours 18 ms 

CNN-
LSTM 

Hybrid 

0.96 0.95 12 hours 25 ms 

 
A. Traditional Machine Learning Approaches 
Early work in HAR focused on employing traditional machine learning algorithms, such as decision trees, 
support vector machines (SVMs), and random forests. These models have been widely used for activity 
recognition tasks due to their interpretability and ability to handle diverse feature representations. 
 
1. Decision Trees 
One of the pioneering studies in this area was conducted by Bao and Intille (2004), who utilized decision 
trees and naïve Bayes classifiers for recognizing activities from body-worn sensor data. Their work 
highlighted the importance of feature selection and the potential of machine learning techniques for activity 
recognition. Decision trees have been widely used in HAR due to their interpretability and ability to handle 
non-linear relationships in data. 
 
2. Support Vector Machines (SVMs) 
Subsequent research explored the application of SVMs for HAR tasks. For instance, Ravi et al. (2005) 
employed SVMs and achieved promising results in recognizing activities from accelerometer data. SVMs 
have been popular in HAR due to their ability to handle high-dimensional data and their robustness to 
overfitting. 
 
3. Random Forests 
Random forests, which ensemble multiple decision trees, have also been employed for activity recognition. 
Cho and Facco (2019) demonstrated the effectiveness of random forests in activity recognition using  
wearable sensor    data. 
Random forests have been shown to be robust to noise and outliers, making them suitable for handling noisy  
sensor data common in HAR tasks. 
While traditional machine learning models have shown promising results, they often require extensive 
feature engineering and may struggle to capture complex patterns and temporal dependencies in sensor data, 
which are crucial for recognizing intricate human activities. 
 
B. Deep Learning Approaches 
In recent years, deep learning models have gained significant attention in the field of activity recognition due  
to their ability to automatically learn discriminative features from raw sensor data and model complex 
temporal dependencies. 
 
1. Convolutional Neural Networks (CNNs) 
Convolutional Neural Networks (CNNs) have been widely employed for HAR tasks, leveraging their ability to 
extract spatial and temporal features from sensor data. For instance, Yang et al. (2015) proposed a CNN-
based model for activity recognition using multi-sensor data, demonstrating  improved performance over 
traditional machine learning models. CNNs have been particularly effective in capturing local patterns and 
dependencies in sensor data, making them well-suited for recognizing activities with distinct motion 
patterns. 

Model Advantages Disadvantages Typical 
Features 

Example 
Applications 

Decision 
Trees 

Interpretable, 
handle non-linear 

data 

Unstable, sensitive to 
data noise 

Time- domain, 
statistical 

Simple activity 
recognition 

Support 
Vector 
Machines 
(SVMs) 

Robust to high 
dimensions, flexible 

kernels 

Sensitive to    outliers, 
parameter tuning 

Frequency- 
domain, 

statistical 

Complex 
activity 
recognition 

 
Random 
Forests 

Robust to noise, 
handle missing 

data 

Complex models, 
prone to overfittin g 

Time- domain, 
statistical, 
frequency- 

domain 

Ensemble 
learning for 
activity 
recognition 
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2. Recurrent Neural Networks (RNNs) and Long Short- Term Memory (LSTM) 
Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, have also 
been extensively explored for activity recognition tasks. LSTMs are well-suited for modeling sequential data 
and capturing long-term dependencies, making them suitable for recognizing activities with temporal 
patterns. Researchers such as Ordóñez and Roggen (2016) and Murad and Pyun (2017) have successfully 
applied LSTM-based models for activity recognition, achieving state-of-the-art performance on various 
benchmark datasets. LSTMs have been effective in handling the inherent sequential nature of  human 
activities and capturing complex temporal relationships in sensor data. 
C. Hybrid and Ensemble Models 
To leverage the strengths of different machine learning approaches, researchers have explored hybrid and 
ensemble models for activity recognition. These models combine multiple techniques, such as CNNs and 
LSTMs, or  ensemble various models to improve overall performance and robustness. 
 
1. CNN-LSTM Hybrid Models 
For example, Edel and Köhler (2015) proposed a hybrid model that combines CNNs and LSTMs for activity 
recognition using wearable sensor data.  Their    approach leverages the strengths of both models, with CNNs 
extracting spatial features and LSTMs capturing temporal dependencies. This hybrid architecture has shown 
improved performance in recognizing complex activities with both spatial and temporal patterns. 
 
2. Ensemble Models 
Similarly, Hammerla et al. (2016) employed an ensemble approach by combining multiple classifiers, 
including decision trees, SVMs, and CNNs, for activity recognition. Their results demonstrated the potential 
of ensemble models to improve overall accuracy and robustness by leveraging the strengths of different 
techniques and mitigating individual model weaknesses. 
 

 
Fig 2. Architecture of a CNN-LSTM hybrid model for activity recognition: 

 
III. PROBLEM STATEMENT 

 
Recognizing and understanding human activities is a crucial task in various domains, including healthcare, 
security, smart environments, and assistive technologies. The ability to accurately sense and classify human 
activities from  sensor data can enable a wide range of applications, such as activity monitoring for elderly or 
patients, gesture recognition for human-computer interaction, and activity- aware home automation systems. 
However, there are several challenges associated with sensing human activities using sensor data: 
1. Sensor Data Complexity: Human activities can be complex and involve multiple body movements, resulting 

in intricate patterns in the sensor data. Extracting meaningful features and representations from raw 
sensor data is a challenging task. 

2. Intra-class Variation: There can be significant  variations in how different individuals perform the same 
activity, leading to intra-class variations in the sensor data patterns.  
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3. Inter-class Similarity: Some activities may have similar motion patterns, making it difficult to distinguish 
between them based solely on sensor data. 

4. Sensor Noise and Uncertainty: Sensor data can be noisy and subject to various uncertainties, such as 
environmental factors, sensor positioning, and device calibration. 

5. Real-time Performance: In many applications, such as assisted living or gesture recognition, it is essential 
to recognize activities in real-time, imposing constraints on the computational complexity of the models. 

 
The problem statement involves developing robust and accurate machine learning models that can effectively 
address these challenges and enable reliable sensing and classification of human activities from sensor data. 
 

IV. Proposed work 
 
The presented flowchart illustrates a systematic workflow for material handling and quality control in a 
production or manufacturing process. It begins with the receipt of raw materials and follows a structured 
sequence of inspections, storage, and production activities, emphasizing decision points to ensure quality 
standards are met. Key stages include an initial inspection of raw materials, storage for approved materials, 
production readiness checks, and pre- dispatch inspections. Decision nodes direct the process to either 
continue toward packaging and dispatch or divert to alternative actions such as returning materials to the 
supplier or scrapping defective items. This workflow ensures streamlined operations, robust quality 
assurance, and effective handling of non-conforming materials, promoting efficiency and minimizing waste 
in the production cycle.`The Spatio-Temporal Attention-based Hybrid Neural Network (STAHNN) combines 
three advanced techniques—Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 
and a self-attention mechanism—to deliver robust and efficient Human Activity Recognition (HAR). 
Convolutional Neural Networks (CNNs) have emerged as a powerful tool for extracting localized spatial 
features in a variety of applications, including Human Activity Recognition (HAR). These networks, which 
are inherently designed to capture spatial hierarchies in data, excel at identifying patterns in structured 
input, such as images, time-series data, or spectrograms derived from raw sensor readings. For HAR, the 
capability to extract these features is crucial, as human activities often exhibit specific spatial and temporal 
patterns that can be harnessed for accurate classification. Whether it is a sudden burst of movement, gradual 
orientation shifts, or periodic oscillations, CNNs are adept at uncovering these intricate patterns. By 
leveraging convolutional layers, pooling mechanisms, and activation functions,  CNNs  effectively  distill  raw  
input data into meaningful feature maps that highlight the salient aspects of the activity under observation. 
When working with sensor data, the choice between 1D and 2D convolutions is pivotal and often dictated by 
the format of the input. Sensor data typically comes in two forms: raw data streams, where signals are 
recorded over time, or transformed representations like spectrograms, where time- frequency characteristics 
are visualized. For raw sensor data streams, 1D convolutions are the optimal choice. A 1D convolution 
operates on one-dimensional arrays, making it ideal for capturing temporal dependencies and spatial 
relationships within the raw signal. For instance, in accelerometer or gyroscope data, a 1D CNN can 
effectively identify shifts in acceleration or angular velocity that correspond to specific activities such as 
walking, running, or sitting. The localized filters of a 1D CNN move along the temporal axis, detecting fine-
grained variations in the signal. This ability to focus on temporal patterns while maintaining computational 
efficiency makes 1D convolutions a practical and robust choice for HAR tasks.On the other hand, 2D 
convolutions are better suited for spectrograms, which are two-dimensional representations of signals where 
one axis typically represents time and the other represents frequency. Spectrograms are commonly used 
when sensor data is preprocessed to extract frequency-domain features, often providing a richer 
representation of the data compared to raw signals. For example, walking and jogging might produce similar 
acceleration patterns in the time domain but can have distinct frequency signatures that are easier to discern 
in a spectrogram. A 2D CNN can process these images-like inputs to capture spatial dependencies both 
within and across time and frequency dimensions. This capability allows the network to learn hierarchical 
features that distinguish between subtle variations in activities, such as the difference between a brisk walk 
and a slow jog. By employing layers of convolution, pooling, and non-linear activation functions, a 2D CNN 
can progressively extract higher-order spatial features that enhance classification accuracy.A critical 
advantage of CNNs lies in their ability to balance feature extraction with computational efficiency. With 
CNNs, there is no longer any need for laborious  human preparation of data, as is common with traditional 
machine learning approaches that depend on handmade features. Because sensor data can vary greatly in 
quality  and format, this flexibility is very beneficial in HAR. 
In addition, convolutional neural networks (CNNs) make  use of local connectivity—in which each neurone is 
linked to a little area of the preceding layer—and parameter sharing—in which the same set of filters is 
applied throughout the input. These properties reduce the number of parameters and computational 
overhead, enabling CNNs to process large datasets efficiently. For example, in an HAR application involving 
multiple sensors, a CNN can simultaneously analyze data streams from accelerometers, gyroscopes, and 
magnetometers, learning both individual and combined patterns without an exponential increase in 
computational cost. In HAR, convolutional neural networks (CNNs) often include several layers, with each 
layer responsible for a different aspect of feature extraction. To pick up on low-level characteristics like 
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peaks, edges, or sudden signal changes, the first convolutional layers use filters. Typically, these 
characteristics match up with relatively easy motions or changes in tasks. The convolutional neural network 
(CNN) learns more complicated and abstract properties, such periodic patterns that show repeated 
behaviours like jogging or cycling, as the data moves through deeper layers of the network. 
The spatial dimensions of the feature maps are reduced by the interspersion of pooling layers between 
convolutional layers. This decreases processing needs and prevents overfitting.  One example is max-pooling, 
which chooses  the most prevalent characteristic in a given area so that the network may save important data 
and ignore the rest. Convolutional neural networks (CNNs) excel at HAR tasks because of the hierarchical 
learning process that allows  them to fully comprehend the input data. Another key consideration in 
designing CNNs for HAR is the integration of domain knowledge into the architecture. For instance, the filter 
size and stride in 1D convolutions can be tailored to the sampling rate of the sensor data, ensuring that the 
network captures meaningful temporal patterns without overlooking critical information. Similarly, for 2D 
CNNs, the resolution of the spectrogram can be adjusted to  highlight frequency ranges relevant to the 
activities being monitored. Regularization techniques such as dropout and batch normalization are often 
employed to improve the generalization capability of the network, ensuring robust performance across 
diverse datasets. 
These techniques help mitigate common challenges in HAR, such as noise in sensor readings, variability in 
user behavior, and differences in device placement.The versatility of CNNs extends beyond feature 
extraction, as they can also be combined with other architectures to enhance performance in HAR. For 
instance, recurrent neural networks (RNNs) or long short-term memory (LSTM) networks are often 
integrated with CNNs to capture temporal dependencies in the data. While CNNs excel at extracting spatial 
features, RNNs and LSTMs are designed to model sequential information, making them a natural 
complement for time- series data. In such hybrid architectures, the CNN layers act as a front-end feature 
extractor, feeding the spatial features into the recurrent layers for temporal modeling. This combination has 
proven particularly effective in HAR applications involving complex activities that unfold over extended 
periods. 
 
RNN for Temporal Modeling: For sequence modelling, Recurrent Neural Networks (RNNs) are crucial, 
especially for detecting data relationships across time. Because of its remarkable capacity to strike a 
compromise between computational economy and performance, Gated Recurrent Units  (GRUs)  have  
become one of the most popular varieties of RNNs. Introduced as a more straightforward version of Long 
Short-Term Memory (LSTM) networks, GRUs keep many of LSTMs' benefits, including mitigation of 
vanishing gradient problems and handling of long-term dependencies. However, they achieve these benefits 
with a simpler architecture, which makes them an attractive choice for applications that require a balance 
between performance and computational cost. 
The main reason GRUs are simpler than LSTMs is because they use a single update gate instead of two, 
which simplifies the model. This is because fewer parameters are needed for GRUs. Without drastically 
lowering the model's capacity to acquire and store pertinent data, this approach lessens the total 
computational load. By effectively modelling temporal dependencies and responding to the data's intrinsic 
unpredictability, GRUs perform exceptionally well in applications like Human Activity Recognition (HAR), 
where sensor data frequently comprises sequential patterns spanning several time scales. 
Two main gates—the update gate and the reset gate—make up the GRU architecture. How much of the 
current input is added to the prior hidden state and how much of the previous hidden state is kept is decided 
by the update gate. The GRU is able to zero in on pertinent patterns while ignoring irrelevant ones thanks to 
this gate, which is essential for maintaining a balance between memory retention and new information 
integration. Conversely, the amount of previously stored data that should be erased is controlled by the reset 
gate. The GRU is able to simulate both short-term and long-term dependencies by adaptively resetting 
certain parts of the hidden state in response to changes in the sequence. 
In practical applications, the simpler architecture of GRUs translates into faster training and inference times 
compared to LSTMs. This efficiency is particularly beneficial in real- time systems, such as wearable devices 
for HAR or edge computing scenarios, where computational resources are limited. For instance, in a fitness 
tracker that monitors user activities, a GRU-based model can process incoming data streams efficiently, 
providing timely and accurate activity recognition without draining the device's battery. Similarly, in smart 
home systems, GRUs can analyze sequential sensor data to detect and predict user behaviors, enabling more 
responsive and intelligent automation. 
Despite their simplicity, GRUs deliver performance that is often on par with or even superior to LSTMs in 
many sequence modeling tasks. This performance parity stems from the GRU's ability to avoid overfitting 
and excessive parameterization, which can be a challenge with LSTMs, especially when dealing with smaller 
datasets. By reducing the number of gates and associated weights, GRUs inherently simplify the  
optimization process, making them less prone to overfitting and easier to train. This robustness is 
particularly valuable in HAR, where data variability— arising from differences in user behavior, sensor noise, 
and device placement—can pose significant challenges. 
Moreover, GRUs integrate seamlessly with other neural network architectures, enhancing their versatility for 



1761  Mr. Pradeep Sharma et al. / Kuey, 30(11), 9960 

 

complex tasks. For instance, in HAR systems that also leverage spatial features from sensor data, GRUs can 
be combined with Convolutional Neural Networks (CNNs) to form hybrid architectures. In such systems, 
CNNs extract spatial features from raw sensor signals or spectrograms, while GRUs model the temporal 
dependencies in the extracted features. This combination leverages the strengths of both architectures, 
enabling the system to achieve high accuracy in recognizing activities that involve intricate spatial-temporal 
patterns, such as dancing, yoga, or sports activities. 
The efficiency of GRUs also extends to applications involving multivariate time-series data, where multiple 
sensors capture different aspects of an activity. For example, a smartphone equipped with accelerometers, 
gyroscopes, and magnetometers generates a multidimensional data stream, each channel contributing 
unique information about the user's movements. GRUs can efficiently process these multivariate sequences, 
learning the temporal relationships both within and across channels. By capturing these dependencies, GRU-
based models provide a holistic understanding of the activity, distinguishing between similar actions with 
subtle differences, such as climbing stairs versus walking on an incline. 
Another advantage of GRUs is their flexibility in handling irregular or missing data, which is common in 
real-world HAR applications. Unlike traditional machine learning models that often struggle with incomplete 
data, GRUs can interpolate or impute missing values by learning the temporal dynamics of the sequence. 
This resilience makes GRUs well-suited for applications like healthcare monitoring, where sensor readings 
may occasionally drop due to connectivity issues or user non-compliance. 
The computational advantages of GRUs also make them a suitable choice for training on large-scale datasets,  
where the reduced number of parameters translates into faster convergence and lower memory 
requirements. This scalability enables researchers and practitioners to experiment with larger architectures 
or ensemble models without incurring prohibitive computational costs. Furthermore, the simplicity of GRUs 
facilitates their implementation in resource-constrained environments, such as embedded systems or IoT 
devices, where computational power and energy efficiency are critical considerations. 
 
Attention Mechanism for Dynamic Focus: The attention mechanism has revolutionized how machine    
learning models process complex datasets, enabling them to dynamically focus on the most relevant features. 
This capability is particularly valuable in Human Activity Recognition (HAR), where data from sensors often 
contains a mix of critical signals and noise. The attention mechanism enhances the model’s ability to 
differentiate between useful information and irrelevant data, significantly improving accuracy and 
robustness. Among the various types of attention, self-attention mechanisms, as popularized by the 
Transformer architecture, have proven to be especially effective in capturing dependencies across both 
spatial and temporal dimensions. 
In HAR, sensor data streams often contain intricate patterns spanning time and space. For example, 
accelerometer data might reflect periodic motion during running, while gyroscope readings indicate subtle 
changes in orientation during stretching. While classic architectures such as CNNs and RNNs excel at 
collecting spatial or temporal characteristics, they frequently miss the mark when it comes to dynamically 
prioritising distinct input portions. By giving each piece in the input sequence a certain amount of weight, the 
self-attention mechanism overcomes this constraint and enables the model to zero in on the most important 
characteristics while disregarding noise or unnecessary data. 
The self-attention mechanism operates by comparing every element of the input sequence with every other 
element to compute pairwise relevance scores. These scores are then normalized to produce attention 
weights, which determine how much influence each element should have in the model's representation. This 
process allows the model to capture long-range dependencies and contextual relationships, which are critical 
for accurately modeling complex activities. For instance, the model can learn that a particular spike in 
acceleration (indicating a jump) is more significant when preceded by a specific sequence of movements 
(indicating preparation for the jump). 
One of the primary advantages of self-attention in HAR is its ability to process sequences in parallel, unlike 
RNNs, which rely on sequential processing. This parallelism makes self-attention mechanisms highly 
efficient, especially when dealing with long sequences or high-dimensional sensor data. Moreover, the ability 
to compute attention scores globally across the entire sequence ensures that the model captures 
dependencies that span both short and long time scales. For example, in activities like yoga or tai chi, where 
movements are slow and deliberate, the model can identify meaningful relationships between actions that 
occur several seconds apart. 
The flexibility of the self-attention mechanism extends to its ability to handle multivariate sensor data, where 
each channel represents a different aspect of the activity. In such cases, self-attention can compute  weights 
not only across time but also across channels, capturing interdependencies between sensors. For example, 
the model might learn that a sharp change in accelerometer readings is significant only when accompanied 
by corresponding changes in gyroscope or magnetometer data. This ability to integrate information across 
multiple dimensions makes self-attention particularly suited for HAR systems that rely on diverse sensor 
inputs. 
In addition to improving feature extraction, self-attention mechanisms enhance robustness to noise and 
missing data. By dynamically adjusting the attention weights, the model can downplay the influence of noisy 
or irrelevant features while amplifying the importance of critical signals. This capability is especially valuable 
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in real-world HAR applications, where sensor readings are often affected by noise due to environmental 
factors, device placement, or user variability. For instance, a fitness tracker worn on the wrist might produce 
noisy accelerometer data during certain activities, but a self-attention-based model can still focus on stable 
and meaningful patterns in the gyroscope or magnetometer data. 
The Transformer architecture, which relies on self-attention, is particularly effective for HAR because it 
provides a unified framework for modeling spatial and temporal dependencies. By stacking multiple layers of 
self-attention and feedforward networks, the Transformer can capture hierarchical relationships in the data. 
The positional encoding mechanism in the Transformer adds information about the order of the input 
sequence, ensuring that  temporal dependencies are preserved even though the model processes the data in 
parallel. This combination of global attention and positional encoding allows the Transformer to excel at 
recognizing complex activities that unfold over  time, such as dancing, martial arts, or team sports. 
Furthermore, self-attention mechanisms can be combined with other architectures to create hybrid models 
that leverage the strengths of different approaches. For example, a CNN can be used to extract localized 
spatial features from raw sensor data or spectrograms, while a self-attention mechanism captures long-range 
dependencies across time. This combination enables the model to recognize activities that involve intricate 
spatial-temporal patterns, such as distinguishing between a jump and a squat, where both actions share 
similar spatial features but differ in their temporal dynamics. 
The scalability of self-attention mechanisms also makes them well-suited for large-scale HAR datasets, where 
the diversity of activities and users requires the model to generalize effectively. By learning to focus on the 
most relevant features dynamically, self-attention-based models can adapt to variations in user behavior, 
device placement, and environmental conditions. Deploying HAR systems in real-world contexts, such 
healthcare monitoring, fitness tracking, or smart home automation, requires this versatility. 
 

V. RESULTS & DISCUSSION 
 
This comparison shows the merits and applicability of three popular Human Activity Recognition (HAR) 
models: STAHNN, Li et al. (2019), and Sun et al. (2022)'s Convolutional LSTM model. On the SBHAR 
dataset, Li et al.'s adaptive segmentation and Random Forest classifiers for transitional activities yield the 
highest accuracy (97.34%). STAHNN performs well on the UCI HAR  dataset, with competitive accuracy 
(96.8%), precision (96.3%), recall (95.9%), and F1-score (96.1%). STAHNN's high specificity (97.2%) helps 
reduce false positives. Video- based AI Hub data shows 92.9% accuracy for the Convolution LSTM model, 
demonstrating its value for joint spatial and temporal feature extraction. STAHNN generalizes well across 
datasets, while the Convolution LSTM model is well-suited for video-based HAR applications. Li et al.'s 
model excels in domain-specific tasks. This comparison shows how models can address different HAR issues 
and their trade-offs. 
 

Table 3: Performance Comparison of HRN model 

Metric 
STAHNN 

(Best Case) 
Li et al., 2019 

Convolutional 

LSTM (2022) 

Dataset UCI HAR SBHAR AI Hub 

Accuracy 96.8% 97.34% 92.9% 

Precision 96.3% 96.7% 92.9% 

Recall 95.9% 96.9% 91.8% 

F1-Score 96.1% 96.8% 92.0% 

Specificity 97.2% Not reported Not reported 

 
 

Key 

Features 

Spatio- 

temporal 

modeling 

(CNN + GRU 

+ Attention 

Mechanism) 

 

Adaptive 

segmentation 

+ Random 

Forest 

Convolutional 

LSTM for joint 

spatial and 

temporal feature 

extraction 

Sampling 

Rate 
50 Hz 50 Hz 

30 FPS (video 

data) 
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VI. CHALLENGES & FUTURE DIRECTIONS 
 
While significant progress has been made in the field of human activity recognition using machine learning 
models, several challenges and opportunities for future research remain: 
 
A. Handling Complex and Concurrent Activities 
Most existing HAR systems focus on recognizing individual or sequential activities. However, human 
activities in real- world scenarios are often complex, involving concurrent or interleaved actions. Developing 
models capable of recognizing and disentangling such complex activities remains a significant challenge. 
 
B. Personalization and Adaptation 
Human activity patterns can vary significantly across individuals due to factors such as age, physical abilities, 
and personal preferences. Personalized and adaptive HAR systems that can learn and adapt to individual 
characteristics and preferences are needed to improve accuracy and user experience. 
 
C. Transfer Learning and Domain Adaptation 
While large labeled datasets are available for certain activities or domains, collecting labeled data for every 
possible activity or environment can be impractical and costly. Transfer learning and domain adaptation 
techniques that can leverage knowledge from related domains or tasks could facilitate the development of 
more generalizable and robust HAR systems. 
 
D. Interpretability and Explain ability 
Deep learning models, while highly accurate, often suffer from a lack of interpretability and explain ability, 
making it challenging to understand the reasoning behind their decisions. Developing interpretable and 
explainable HAR models is crucial for building trust and facilitating human- AI collaboration in applications 
such as healthcare and assisted living. 
 
E. Privacy and Security Considerations 
HAR systems often rely on sensitive personal data, such as location, physiological signals, and behavioral 
patterns. Addressing privacy and security concerns while maintaining the utility of these systems is a critical 
challenge that requires robust data protection mechanisms and privacy- preserving techniques. 
 
F. Integration with Ambient Intelligence and IoT 
To fully realize the potential of HAR systems, seamless integration with ambient intelligence systems, smart 
environments, and the Internet of Things (IoT) is necessary. This integration requires standardized data 
formats, communication protocols, and interoperability frameworks to enable seamless data exchange and 
coordination among various systems and devices. 
 
G. Real-World Deployment and Scalability 
Transitioning from research prototypes to real-world deployments of HAR systems at scale presents 
challenges related to system robustness, scalability, and maintenance. Addressing these challenges will 
require  collaborative efforts between researchers, industry partners, and end-users to ensure the successful 
adoption and long-term sustainability of HAR systems. 



1764  Mr. Pradeep Sharma et al. / Kuey, 30(11), 9960 

 
VII. CONCLUSION: 

 
Machine learning models have demonstrated remarkable capabilities in sensing and recognizing human 
activities from various data sources, including sensor data, video footage, and contextual information. The 
ability to accurately identify and understand human activities has significant implications across diverse 
domains, such as healthcare, security, smart environments, and human- computer interaction. 
In this comprehensive review, we have explored the state- of-the-art machine learning techniques employed 
for human activity recognition. We have critically analyzed the strengths and limitations of different models, 
including traditional methods like Hidden Markov Models, and more recent deep learning approaches like 
Convolutional Neural Networks and Recurrent Neural Networks. Additionally, we have highlighted the 
challenges associated with data acquisition, feature engineering, and model generalization across different 
environments and scenarios. 
The review has shown that while significant progress has been made, there are still several open challenges 
that need to be addressed. These include handling complex and multi- task activities, dealing with noisy and 
incomplete data, ensuring privacy and security, and developing models that can adapt to changing 
environments and user behaviours. 
Overall, the field of human activity recognition using machine learning models has matured significantly, 
and the techniques discussed in this review have the potential to revolutionize the way we interact with 
intelligent systems and facilitate seamless human-computer interaction.In conclusion, human activity 
detection through mobile device sensors has numerous applications in various fields. The types of sensors 
utilized, such as the accelerometer, gyroscope, and magnetometer, can provide a more accurate 
representation of human activity. Techniques such as rule- based methods, machine learning algorithms, and 
deep learning algorithms can be utilized to detect activities. The applications of human activity detection in 
healthcare, sports, and entertainment are vast, and the potential for future developments in this field is 
promising. 
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