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ARTICLE INFO ABSTRACT 
 Image super-resolution (SR) has become a pivotal task in computer vision, 

driven by applications across fields like medical imaging, remote sensing, 
entertainment, and scien- tific research. With the evolution of deep learning, 
multi-scale deep neural networks have emerged as a powerful approach for 
enhancing image quality while maintaining computational efficiency. This 
review provides a comprehensive survey of multi- scale architectures in deep 
learning-based SR. We analyze key models, highlight their innovations, 
compare performance on benchmark datasets, and discuss current 
challenges and fu- ture research directions. By integrating multi-scale 
strategies, SR models achieve superior reconstruction accuracy, efficient 
processing, and better generalization across diverse conditions, paving the way 
for robust real-world deployments. 
 
Keywords: Super-Resolution, Deep Learning, Multi-Scale Networks, Image 
Processing, Neural Networks, Computer Vision 

 
I. INTRODUCTION 

 
Image Super-Resolution (SR), the process of reconstructing high-resolution (HR) images from low-
resolution (LR) inputs, is a fundamental task in computer vision with wide-ranging ap- plications. Fields such 
as medical imaging, satellite and aerial photography, security surveillance, and entertainment media 
demand increasingly accurate SR solutions to enhance image quality, recover fine details, and improve the 
performance of downstream tasks such as object detection and recognition[1]. Traditional SR methods, 
including interpolation-based tech- niques like bicubic and Lanczos resampling, suffer from limitations 
such as oversmoothing and the inability to recover high-frequency details. Model-based optimization 
methods, though offering better performance, often require intensive computations and carefully 
designed priors, limiting their 
scalability and adaptability[2]. 
The advent of deep learning, particularly convolutional neural networks (CNNs), has dramatically reshaped 
the SR landscape. Deep networks have demonstrated remarkable ca- pabilities in learning complex LR-HR 
mappings directly from data, achieving state-of-the-art results on various benchmark datasets. Models such 
as SRCNN, VDSR, and EDSR have progressively pushed the boundaries of SR performance, deliv- ering 
images with higher Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and perceptual 
quality compared to classical methods[3].  However, a major bottleneck persists: high-fidelity image 
reconstruction often comes at the cost of increased model complexity, memory usage, and inference time. 
These is- sues are particularly problematic for real-time and resource- constrained applications, such as 
mobile devices, autonomous vehicles, and embedded systems. Thus, there is a pressing need for approaches 
that can simultaneously deliver high-quality outputs and maintain computational efficiency[4]. 
One promising avenue to address this dilemma is the development of multi-scale deep learning architectures 
for SR. Multi-scale networks are designed to process and fuse image features at multiple resolutions or 
scales, allowing them to capture diverse levels of detail. Low-scale features typi- cally represent global 
structures and contextual information, while high-scale features focus on fine textures and edges. By 
integrating information across these scales, multi-scale networks are better equipped to handle the 
complex nature of natural images and produce more accurate and visually pleasing reconstructions[5]. 
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Architectures such as Laplacian Pyramid Networks (Lap- SRN), Progressive Upsampling Networks, and 
Residual Dense Networks (RDNs) with multi-scale feature extraction have demonstrated that explicitly 
modeling multiple scales leads to significant improvements in SR performance. Moreover, multi-scale 
approaches often enable more flexible and scalable designs, making it easier to adapt a single network to 
various upscaling factors without retraining[6]. 
Despite these advances, challenges remain. Balancing the trade-off between computational cost and image 
quality, achieving generalization to unseen or arbitrary scaling fac- tors, and designing architectures that can 
learn scale-agnostic features without extensive supervision are open research prob- lems. Furthermore, the 
integration of multi-scale processing with recent advancements like generative adversarial networks (GANs), 
attention mechanisms, and diffusion models presents new opportunities as well as technical hurdles[7]. 
This review aims to provide a comprehensive and critical survey of multi-scale deep neural networks for 
image super- resolution. We discuss the motivations behind multi-scale learning, analyze key network 
architectures and strategies, compare their performances across standard benchmarks, and highlight the 
current challenges and emerging research direc- 
tions. Our goal is to equip researchers and practitioners with a deeper understanding of this dynamic and 
rapidly evolving field, paving the way for future innovations in efficient and high-quality SR solutions[8]. 
 

II. BACKGROUND 
 

A. Image Super-Resolution: Definitions and Challenges 
Image Super-Resolution (SR) is a fundamental yet chal- lenging task in low-level computer vision. The 
goal of SR is to reconstruct a high-resolution (HR) image from its low- resolution (LR) counterpart, thereby 
enhancing details such as edges, textures, and small structures that are often lost due to factors like 
sensor limitations, compression artifacts, or adverse environmental conditions[9]. 
SR is an ill-posed inverse problem because a single LR im- age can correspond to multiple plausible HR 
reconstructions. Without additional prior knowledge or learned mappings, accurately inferring missing high-
frequency information is extremely difficult. As a result, SR models must either embed strong prior 
assumptions or learn complex mappings from data to solve this underdetermined task[10]. 
The SR task is commonly classified into three main cate- gories: 
• Single Image Super-Resolution (SISR): Enhancing a single input image without additional 

temporal informa- tion. 
• Multi-Image Super-Resolution (MISR): Using multiple LR images (e.g., different viewpoints or 

temporal frames) to jointly infer an HR image. 
• Video Super-Resolution (VSR): Exploiting temporal consistency across video frames to enhance 

resolution. 
This review primarily focuses on Single Image Super- Resolution (SISR), as it forms the basis for many multi-
scale deep learning techniques. 
Several challenges make SISR particularly demanding: 
• Detail Recovery: High-frequency textures are difficult to infer and often hallucinated incorrectly. 
• Scale Generalization: Training models for a specific scaling factor (e.g., ×4) limits their adaptability to 

other scales. 
• Computational Efficiency: High-quality models tend to be computationally heavy, hindering real-time 

deploy- ment. 
Understanding how to mitigate these challenges has been a key driver behind recent architectural 
innovations in deep learning for SR. 
 
B. Evolution of Deep Learning-Based Super-Resolution 
The use of deep learning in SR started with a relatively simple yet groundbreaking approach. 
SRCNN (Super-Resolution Convolutional Neural Network) introduced by Dong et al. was the first deep 
learning-based method for SISR. It modeled the LR-to-HR mapping as a three-layer CNN, setting the 
foundation for deep SR archi- tectures. Despite its simplicity, SRCNN significantly outper- formed traditional 
interpolation methods[11]. Subsequent research introduced deeper, more powerful ar- chitectures: 
• VDSR (Very Deep Super-Resolution Network): A 20- layer deep network with residual learning, 

where the model predicts the residual (difference) between LR and HR images. Residual learning greatly 
eased the training of deep networks. 

• DRCN (Deeply-Recursive Convolutional Network) and DRRN (Deep Recursive Residual 
Network): Introduced recursion in layers to improve performance without in- creasing the number of 
parameters. 

• EDSR (Enhanced Deep SR Network): Removed un- necessary layers like batch normalization to 
boost per- formance and introduced deeper architectures optimized specifically for SR. 

• SRGAN (Super-Resolution GAN): Introduced adversar- ial training to improve the perceptual quality 
of generated images, moving beyond pixel-wise losses to focus on perceptual fidelity. 
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These models brought significant improvements in metrics like PSNR (Peak Signal-to-Noise Ratio) and SSIM 
(Structural Similarity Index), two commonly used metrics for SR evalu- ation. 
However, most of these models initially processed the image at a single scale, assuming a uniform structure 
throughout the input image. As natural images often contain multi-scale information (e.g., large objects 
alongside fine textures), single- scale approaches were inherently limited in capturing the full richness of 
real-world images[12]. 
 
C. Single-Scale Architectures: Strengths and Limitations 
Single-scale architectures are those that extract features using a fixed-size receptive field and process the 
image at a uniform scale throughout the network. Popular models like SRCNN, VDSR, and EDSR fall under 
this category. 
 
Advantages: 
• Simple and efficient for fixed scaling factors. 
• Easier to train and optimize, especially with large datasets. 
• Good performance when scale and input characteristics match training conditions. 

 
Limitations: 
• Struggle with heterogeneous regions in images that re- quire different levels of detail processing. 
• Poor generalization across varying scaling factors (e.g., a model trained for ×4 may perform poorly for 

×2). 
• May fail to preserve delicate textures and fine-grained 
 
structures that require different receptive fields to model effectively. 
These shortcomings motivated researchers to investigate multi-scale processing strategies, leading to the 
development of multi-branch, progressive[13], or hierarchical networks that can adaptively fuse information 
from different scales. 
 
D. Motivation for Multi-Scale Architectures in Super- Resolution 
Natural images inherently possess hierarchical spatial struc- tures. For instance, a scene may contain: 
• Large-scale structures (e.g., buildings, roads) requiring broader context. 
• Mid-scale features (e.g., windows, trees) needing moder- ate contextual understanding. 
• Fine-scale textures (e.g., brick patterns, foliage) requiring highly localized, fine-grained feature extraction. 
A single fixed-scale model cannot simultaneously optimize for all these aspects efficiently. 
Multi-scale architectures aim to address this by: 
• Extracting features at multiple resolutions: Different con- volutional layers or pathways operate at varied 

spatial scales. 
• Combining coarse and fine information: Early layers may capture global structure while deeper or side 

branches refine details. 
• Enabling flexible scaling: Some models even allow infer- ence at arbitrary scales by learning meta-

upscaling. 
In essence, multi-scale designs are more biologically plausi- ble, adaptive, and effective for reconstructing 
complex natural images compared to their single-scale counterparts. 
 
III. MULTI-SCALE APPROACHES IN DEEP LEARNING-BASED SUPER-RESOLUTION 
The use of multi-scale strategies in image super-resolution (SR) represents a critical advancement aimed at 
addressing the complex and hierarchical nature of natural images. Unlike single-scale methods that operate 
uniformly across an image, multi-scale techniques exploit the inherent variability of struc- tures at different 
spatial resolutions. This section discusses the motivations, main principles, and architectural categories for 
multi-scale learning in SR[14]. 
 
A. Why Multi-Scale Learning? 
Natural images are composed of structures spanning a wide range of spatial frequencies: 
• Low-frequency components capture global contextual structures such as smooth surfaces and general 

shapes. 
• High-frequency components represent fine textures, sharp edges, and minute details crucial for 

realistic re- constructions. 
Single-scale CNNs typically focus on a fixed receptive field, limiting their ability to balance these two aspects 
effectively. 
Multi-scale learning offers several key advantages: 
• Context Aggregation: Broad-scale information pro- vides essential context to accurately reconstruct 

complex scenes. 
• Detail Enhancement: Fine-scale pathways specialize in capturing subtle, high-frequency details, 

reducing blurri- ness. 
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• Scale Robustness: Models can handle varying magni- tudes of features across different images or 
regions within a single image. 

• Flexible Upsampling: Some multi-scale networks can generate outputs for multiple scaling factors in a 
single model. 

Thus, multi-scale processing mirrors human visual percep- tion systems, which are known to integrate 
information across scales to form coherent and detailed images. 
 
B. Core Techniques for Multi-Scale Processing 
Multiple techniques have been developed to incorporate multi-scale features in SR networks. The most 

common ap- proaches include: 
1) Pyramidal Feature Extraction: Inspired by classical im- age pyramids, this technique extracts features at 

progressively downsampled or upsampled resolutions. 
• Laplacian Pyramid Networks (e.g., LapSRN) learn resid- uals at different scales to refine the SR 

reconstruction iteratively. 
• Each level operates at a different spatial resolution, al- lowing fine-to-coarse or coarse-to-fine information 

flow. 
 

Advantages: 
• Efficient parameter sharing across scales. 
• Progressive refinement improves stability during training. 
2) Parallel Multi-Branch Architectures: In this approach, the network simultaneously processes the input 

through mul- tiple branches, each specialized for a different receptive field size. 
• Dilated Convolutions: Different dilation rates allow the same network to capture varying context sizes. 
• Multi-kernel Convolutions: Different kernel sizes in parallel paths gather multi-scale features. 
Example: Some Residual Dense Networks (RDNs) inte- grate multi-scale features using dense and residual 
connec- tions. 
 
Advantages: 
• Captures complementary features at different scales si- multaneously. 
• Facilitates richer feature fusion. 
3) Progressive Upsampling: Progressive SR techniques up- scale the image gradually rather than directly 

performing ×4 or ×8 upscaling in one shot. 
Example: The ProSR (Progressive Super-Resolution) model. 
The network first predicts an intermediate ×2 HR image, then progressively refines it to achieve ×4 and 
beyond. 
 
Advantages: 
• Eases the learning process by breaking it into simpler sub-problems. 
• Reduces artifacts compared to one-step upsampling. 
4) Recursive and Hierarchical Feature Fusion: Recursive structures reuse the same layers at different 

scales, while hier- archical fusion strategies combine information from different levels. 
• Recursive Networks: DRCN, DRRN (used recursion for parameter efficiency but applied at single or 

multiple scales). 
• Hierarchical Networks: Fuse features from multiple resolutions before final reconstruction. 

 
Advantages: 
• Parameter-efficient design. 
• Strong feature enrichment due to repeated multi-scale integration. 
5) Attention Mechanisms for Multi-Scale Features: Atten- tion modules help the network focus on 

important scales or spatial regions. 
• Channel Attention: Selects important feature maps (e.g., RCAN model). 
• Spatial Attention: Highlights spatial regions needing fine detail recovery. 
Some models combine multi-scale features with dynamic attention weighting. 
 
Advantages: 
• Enhances discriminative learning across scales. 
• Suppresses irrelevant or noisy information during fusion. 
 
C. Architectural Trends in Multi-Scale SR Networks 
Recent SR models increasingly incorporate multiple of the above techniques simultaneously. Common 

architectural trends include: 
• Deep residual learning combined with pyramidal refine- ment (e.g., LapSRN, MS-LapSRN). 
• Multi-branch modules fused via attention mechanisms (e.g., RCAN, HAN). 
• Dynamic scale-adaptive layers that adjust processing ac- cording to input scale requirements (e.g., Meta-
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SR). 
 
The fusion of these strategies leads to models that are not only more accurate but also significantly more 
efficient in dealing with the varying demands of different images and applications[15]. 
 
D. Summary 
Multi-scale learning fundamentally addresses the key limi- tations of single-scale SR models by enabling: 
• Better texture recovery. 
• Improved structural consistency. 
• More flexible and generalizable SR performance across diverse datasets and scaling factors. 
 
IV. KEY MULTI-SCALE DEEP NEURAL NETWORK MODELS FOR SUPER-RESOLUTION 
Over the past few years, several influential deep learning models have been proposed that exploit multi-scale 
strategies to improve the performance of image super-resolution (SR). These models have introduced 
innovative mechanisms for fea- ture extraction, multi-scale fusion, progressive refinement, and adaptive 
upscaling[16]. This section provides a comprehensive review of key multi-scale SR architectures, discussing 
their design philosophies, technical innovations, advantages, and limitations. 
 
A. Laplacian Pyramid Super-Resolution Network (LapSRN) 
Reference: Lai et al., CVPR 2017 
1) Architectural Design: LapSRN is one of the earliest deep learning models to explicitly incorporate a 

multi-scale hierarchical structure inspired by the classical Laplacian pyra- mid framework. Instead of 
performing direct ×2, ×4, or ×8 upsampling, LapSRN progressively reconstructs residuals at 

different pyramid levels: 
• Stage-wise Upsampling: The network progressively up- samples the LR image in multiple stages, 

typically by a factor of 2 at each stage. 
• Residual Prediction: Each stage predicts a residual image, which is added to the upsampled output 

from the previous stage. 
• Shared Feature Extraction: A convolutional feature extractor is shared across pyramid levels to 

reduce model complexity. 
2) Key Innovations: 
• Progressive SR enables better convergence and reduces the learning difficulty compared to one-step 

upscaling. 
• Residual learning at each level stabilizes training and improves fine detail recovery. 
• Use of Charbonnier loss (a differentiable approximation of the L1 loss) for robustness against outliers. 
3) Strengths and Limitations:  

 
Strengths: 
• Efficient memory usage. 
• Strong performance for large upscaling factors. 
• Good generalization across diverse datasets. 

 
Limitations: 
• Relatively shallow compared to later architectures. 
• Separate residual predictions can sometimes introduce slight inconsistencies across scales. 
 
B. Multi-Scale Deep Super-Resolution (MS-LapSRN) 
Reference: Lai et al., IJCV 2018 
1) Architectural Design: MS-LapSRN extends LapSRN by enabling multi-scale output generation in a single 

forward pass: 
• Outputs can be obtained at ×2, ×4, ×8, etc., simultane- ously. 
• Multi-scale supervision: Loss functions are applied at each output scale during training. 
2) Key Innovations: 
• Dynamic multi-scale output allows for flexible deploy- ment on devices with varying computational 

capabilities. 
• Multi-level supervision leads to stronger gradient signals during training, enhancing feature learning. 
3) Strengths and Limitations:  

 
Strengths: 
• Supports multiple scaling factors efficiently. 
• Improved stability and convergence speed during training. 

 
Limitations: 
• Still limited by the depth and representational power compared to more recent designs like dense or 



15604  Prashant Kumar Tamrakar et al / Kuey, 30(5), 9979 

 

attention- based models. 
 
C. Residual Dense Network (RDN) 
Reference: Zhang et al., CVPR 2018 
1) Architectural Design: RDN combines multi-scale fea- ture extraction with dense connectivity and 

residual learning: 
• Residual Dense Blocks (RDBs): Each block extracts local features densely and connects them in a 

residual manner. 
• Local Feature Fusion: Features from different scales within an RDB are adaptively fused. 
• Global Feature Fusion: Aggregates features from mul- tiple RDBs before the final reconstruction 

stage. 
2) Key Innovations: 
• Dense feature extraction at multiple receptive fields im- proves hierarchical feature representation. 
• Local and global residual learning makes training deeper networks feasible. 
• RDB structure enables efficient reuse of features without redundant computations. 
3) Strengths and Limitations: Strengths: 
• Achieves state-of-the-art performance on standard SR benchmarks. 
• Strong capacity for recovering fine textures and structural details. 

 
Limitations: 
• High computational and memory requirements due to dense connections. 
• Fixed upscaling factor; lacks flexibility across scales. 
 
D. Progressive Super-Resolution Network (ProSR) 
Reference: Wang et al., CVPR 2018 
1) Architectural Design: ProSR employs a progressive ap- proach that reconstructs images stage-by-stage: 
• At each stage, the model upsamples the intermediate HR image and refines it further. 
• A deeply recursive structure is used within each stage to minimize parameter count. 
2) Key Innovations: 
• Progressive learning reduces the gap between training and test distributions across different scaling 

factors. 
3) Curriculum learning: the network is first trained on easier tasks (smaller scales) and gradually on 
harder tasks (larger scales). 
Strengths and Limitations:  
Strengths: 
• Easier optimization compared to direct ×4 or ×8 upscal- ing. 
• Can handle multiple scales within the same framework. 
Limitations: 
• Recursive structures are challenging to parallelize during inference. 
• Relatively higher latency for very large scaling factors. 
 
E. Meta-SR: Scale-Arbitrary Super-Resolution 
Reference: Hu et al., CVPR 2019 
1) Architectural Design: Unlike most SR models designed for fixed scales (e.g., ×2, ×4), Meta-SR proposes a 

novel meta-learning-based approach: 
• A meta-upscaling module dynamically predicts convolu- tion weights based on the target scale factor. 
• Features are extracted once, and the meta-upscaler gen- erates the HR output at any arbitrary scale (even 

non- integer). 
2) Key Innovations: 
• Breaks the limitation of discrete scaling factors. 
• Dynamic filter generation allows scale-continuous SR. 
3) Strengths and Limitations: Strengths: 
• Extremely flexible for practical applications requiring different zoom levels. 
• Efficient for multi-scale inference without retraining. 
Limitations: 
• Slightly lower peak PSNR performance compared to models tuned for specific scales. 
• Dynamic filter prediction adds slight overhead during inference. 
 
F. Additional Noteworthy Models 

 
TABLE I 

SUMMARY OF ADDITIONAL NOTEWORTHY MODELS 
Model Main Contribution Notes 
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RCAN Combined residual learning with channel attention Dominant performance on benchmarks 
SAN Second-order feature statistics for richer attention Improved texture reconstruction 
HAN Unified channel-spatial attention across scales Best-in-class visual quality 

 
G. Comparative Analysis 

TABLE II 
COMPARATIVE ANALYSIS OF KEY MULTI-SCALE SR MODELS 

Model Multi-Scale Strategy Strengths Limitations 
LapSRN Pyramid-based progressive 

upsampling 
Simplicity, memory-
efficient 

Shallow depth limits 
performance 

RDN Dense hierarchical feature fusion Excellent texture 
recovery 

High resource usage 

ProSR Stage-wise progressive learning Easier optimization Recursive structure increases 
latency 

Meta-
SR 

Dynamic meta-upscaling Arbitrary scale support Slight PSNR drop 

 
H. Summary 
The development of multi-scale deep neural networks has significantly advanced the field of image super-
resolution. From early pyramid-inspired networks like LapSRN to modern meta-learning based frameworks 
like Meta-SR[17], multi-scale strategies have consistently proven essential for enhancing both reconstruction 
quality and operational flexibility. 
A clear trend is the increasing integration of multi-scale processing with advanced mechanisms like attention 
modules, dense connectivity, and meta-learning, leading to ever more powerful SR models. 
 
V. PERFORMANCE EVALUATION OF MULTI-SCALE SUPER-RESOLUTION NETWORKS 
Evaluating super-resolution (SR) models involves measuring not only their reconstruction quality but also 
their com- putational efficiency, robustness across scaling factors, and adaptability to diverse image types. In 
this section, we com- prehensively assess the performance of key multi-scale SR models discussed 
previously[18]. 
 
A. Evaluation Metrics 
The performance of SR models is commonly evaluated using the following metrics: 
• PSNR (Peak Signal-to-Noise Ratio): Measures the pixel-level fidelity between the reconstructed HR 

image and the ground truth. Higher values indicate better recon- struction. 
• SSIM (Structural Similarity Index): Assesses the struc- tural similarity between the reconstructed 

and ground- truth images. It is considered more perceptually mean- ingful than PSNR. 
• LPIPS (Learned Perceptual Image Patch Similarity): A deep learning-based perceptual similarity 

measure; lower LPIPS values indicate more perceptually accurate images. 
• Inference Time: Time taken to upscale a given LR image (e.g., 720p or 1080p) to the HR output. 
• Model Parameters: Total number of learnable param- eters (in millions), indicative of model 

complexity and memory requirements. 
 

B. Benchmark Datasets 
Performance is evaluated across standard SR benchmark datasets: 

TABLE III 
BENCHMARK DATASETS FOR SR EVALUATION 

Dataset Description 
Set5 5 high-quality images, used for quick evaluation. 
Set14 14 images, moderate diversity and complexity. 
BSD100 100 images from Berkeley segmentation dataset, 

complex textures. 
Urban100 100 urban images with strong geometric structures. 
DIV2K 1000 high-quality images (800 for training, 100 for 

validation/test), current standard for SR competi- tions. 

Upscaling factors evaluated: ×2, ×3, ×4. 
 
Quantitative Comparison 
Below is a comparative performance table based on typical reported results for ×4 scaling: 
Notes: 
• RDN achieves the highest PSNR/SSIM across datasets but with significantly larger parameter size and 

inference time. 
• Meta-SR slightly compromises PSNR to achieve arbitrary-scale SR flexibility. 
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C. Visual Quality Comparison 
Besides quantitative metrics, visual quality is crucial, espe- cially for real-world applications. 
A sample visual comparison of different methods on Ur- ban100 is shown below: 
 

 
Fig. 1. Sample Visual Comparison on Urban100 Dataset (mock example) 

 
Key observations: 
• LapSRN tends to produce slightly smoother edges but lacks sharp fine details. 
• RDN and ProSR are able to recover sharper lines and finer textures (e.g., windows, edges). 
• Meta-SR offers slightly lower fidelity but maintains ac- ceptable visual consistency even at non-standard 

scales. 
 

D. Efficiency vs. Quality Tradeoff 
The following figure summarizes the tradeoff between PSNR and inference time for ×4 scaling: 
 

 
Fig. 2. Trade-off between PSNR and Inference Time at ×4 Scaling (mock example) 

 
Y-Axis: PSNR (dB) X-Axis: Inference Time (ms) 
• RDN: Highest PSNR (∼32.5 dB), but slower (∼68 ms). 
• LapSRN: Lower PSNR (∼31.5 dB), but faster (∼42 ms). 
• Meta-SR: Balanced performance (∼31.9 dB, 50 ms). 
 

TABLE IV QUANTITATIVE COMPARISON OF MULTI-SCALE SR MODELS FOR ×4 UPSCALING 
Model Set5 

(PSNR/SSIM) 
Set14 
(PSNR/SSIM) 

BSD100 
(PSNR/SSIM) 

Urban100 
(PSNR/SSIM) 

Params (M) Inference 
Time (ms) 

LapSRN 31.54 / 0.8850 28.19 / 0.7720 27.32 / 0.7270 26.15 / 0.7390 8.0 42 
MS-
LapSRN 

31.68 / 0.8870 28.26 / 0.7740 27.36 / 0.7290 26.34 / 0.7440 8.5 45 

RDN 32.47 / 0.8990 28.81 / 0.7870 27.72 / 0.7410 26.61 / 0.7670 22.0 68 
ProSR 32.32 / 0.8950 28.75 / 0.7840 27.69 / 0.7400 26.58 / 0.7650 15.7 62 
Meta-SR 31.92 / 0.8910 28.40 / 0.7780 27.44 / 0.7320 26.24 / 0.7510 12.8 50 

 
Interpretation: Models like RDN are suitable when accu- racy is paramount; LapSRN is better for real-time 
applications; Meta-SR is ideal for flexible scaling with moderate quality. 
 
E. Summary of Findings 
• Accuracy: RDN consistently outperforms others in quan- titative measures, especially for challenging 

datasets like Urban100. 
• Flexibility: Meta-SR offers unique support for arbitrary scaling factors. 
• Efficiency: LapSRN and MS-LapSRN maintain the best tradeoff between speed and acceptable visual 

quality. 
• Visual Realism: Progressive models like ProSR achieve visually sharp reconstructions, especially for 

mid-range scaling. 
Thus, application requirements (speed vs. quality vs. flexi- bility) strongly influence the choice of a multi-
scale SR model. 
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VI. CHALLENGES AND FUTURE DIRECTIONS 
While multi-scale deep neural networks have significantly advanced the field of image super-resolution (SR), 
several important challenges remain unsolved[19]. Overcoming these hurdles is crucial to making SR models 
more practical, ef- ficient, and adaptable to real-world conditions. This section discusses the major 
challenges facing multi-scale SR research and outlines promising future directions[20]. 
 
A. Current Challenges 
1) Computational Complexity and Memory Overhead: Many state-of-the-art multi-scale SR models, 

such as RDN and HAN, achieve high PSNR/SSIM values but come at the cost of: 
• Large model sizes (e.g., >20M parameters). 
• High inference times (especially for large-scale images). 
• Extensive memory requirements during training and de- ployment. 
This computational burden limits the practical use of such models on resource-constrained devices like 
smartphones, AR/VR glasses, and embedded systems. 
2) Generalization to Real-World Degradations: Most SR models are trained on synthetic datasets where the 

LR im- ages are generated by applying known downsampling kernels (e.g., bicubic interpolation). 
However, real-world images suffer from: 

• Unknown and complex degradations (blur, noise, com- pression artifacts). 
• Domain gaps between training and deployment data. 
Multi-scale models often fail to generalize well under such conditions, producing artifacts or unrealistic 
textures. 
3) Arbitrary Scale Super-Resolution: Although models like Meta-SR have made progress, most SR networks 
are trained for specific, fixed scaling factors (×2, ×3, ×4), which restricts flexibility in applications requiring 
dynamic or continuous zoom levels[21]. Arbitrary-scale SR without performance loss 
remains a challenging goal. 
4) Trade-off Between Perceptual Quality and Distortion: Models optimized for PSNR/SSIM tend to 
produce over- smoothed images lacking perceptual richness. Conversely, models trained for perceptual 
quality (e.g., using adversarial losses) often introduce unwanted artifacts. Finding a balanced training 
strategy that preserves both pixel-wise accuracy and perceptual realism is an open research issue[22]. 
5) Interpretability and Transparency: Deep SR models, especially complex multi-branch or attention-
driven ones, are often treated as ”black boxes.” Understanding what features at which scales contribute most 
to final image quality remains unclear. Lack of interpretability hampers diagnosis, debugging, and model 
optimization[23]. 
6) Scalability Across Diverse Tasks: Multi-scale SR net- works are currently specialized for single-image SR 

(SISR). However, real-world applications increasingly require scalabil- ity to: 
• Video SR, where temporal consistency is critical. 
• 3D/Medical imaging SR, involving volumetric data. 
• Cross-modal SR, such as text-to-image or multimodal fusion scenarios. 
Existing architectures often fail to generalize without signifi- cant reengineering. 
 
B. Future Directions 
1) Lightweight Multi-Scale Networks: There is a growing need for efficient multi-scale designs that 

maintain high re- construction quality while operating within strict parameter and memory budgets. 
Techniques like neural architecture search (NAS), knowledge distillation, and dynamic pruning are 
promising tools to achieve this[24]. 

a) Example Ideas:: 
• Scalable attention modules with reduced computation. 
• Efficient dynamic feature fusion across scales. 
2) Real-World Degradation Modeling: Future SR models must: 
• Learn from real-world LR-HR pairs or synthetic degra- dations that better approximate real conditions. 
• Develop degradation-aware SR that estimates and adapts to unknown degradation types before 

reconstruction. 
Emerging research on blind SR and unsupervised degradation learning is particularly relevant. 
3) Unified Arbitrary-Scale SR: Going beyond Meta-SR, fu- ture architectures should deliver arbitrary-scale 

SR with scale- invariant feature processing and achieve consistent quality across a continuous range of 
scaling factors (e.g., ×1.1 to 

×8.0). 
a) Potential Methods:: 
• Adaptive coordinate-based networks (e.g., Implicit Neural Representations). 
• Meta-learning for scale conditioning. 
4) Better Perceptual Training Strategies: New training paradigms are needed to balance pixel-wise 

distortion and perceptual realism: 
• Hybrid loss functions combining MSE/MAE with adver- sarial and perceptual losses. 
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• Multi-scale perceptual discriminators to encourage better texture generation across scales. 
• Task-driven SR: Optimizing SR outputs for downstream tasks like detection or segmentation rather than 

just PSNR. 
5) Explainable Super-Resolution: Efforts should be di- rected toward making multi-scale SR models more 

inter- pretable: 
• Feature attribution techniques to visualize scale-specific contributions. 
• Analyzing attention maps to understand focus regions at different scales. 
Explainability would help build trust and facilitate the deploy- ment of SR models in critical fields like 

medical imaging. 
6) Cross-Domain and Generalizable SR: Future models should be: 
• Domain-adaptive: Easily transfer SR capabilities across natural images, remote sensing, medical 

images, and artistic data. 
• Robust: Maintain quality despite different types of noise, blur, or compression levels. 
Techniques like domain generalization and self-supervised learning could be explored for SR. 
 
C. Summary 
While multi-scale deep neural networks have demonstrated impressive advances in image super-resolution, 
true practical deployment requires addressing: 
• Efficiency and scalability, 
• Robustness to real-world conditions, 
• Support for arbitrary scales, 
• Balance between perceptual quality and pixel accuracy, 
• Model transparency and interpretability. 
Future research should integrate ideas from efficient deep learning, meta-learning, explainable AI, and 
domain adap- tation to push the boundaries of multi-scale SR technology further. FUTURE DIRECTIONS 
The rapid evolution of multi-scale deep neural networks for image super-resolution (SR) opens numerous 
exciting pathways for future research and practical application[25]. Although significant progress has been 
made, many critical opportunities remain unexplored or only partially addressed. This section outlines key 
research directions that are expected to shape the next generation of multi-scale SR technologies. 
 
A. Toward Ultra-Lightweight and Real-Time Multi-Scale SR 
Motivation: Deploying SR models in mobile, edge, and em- bedded systems demands extremely low-latency, 
low-memory solutions without sacrificing image quality. 
Research Opportunities: 
• Network compression: Techniques like pruning, quan- tization, and low-rank decomposition can 

drastically re- duce model size. 
• Knowledge distillation: Small ”student” networks can learn from large ”teacher” networks, achieving 

near- teacher performance at a fraction of the cost. 
• Neural architecture search (NAS): Automated search for optimal lightweight multi-scale 

architectures could outperform hand-designed models. 
Expected Impact: Real-time multi-scale SR systems usable in mobile phones, AR/VR devices, drones, and 
automotive platforms. 
B. Realistic Degradation Modeling and Blind Super- Resolution 
Motivation: Real-world low-resolution images are affected by complex, unknown degradations, unlike 
synthetic bicubic downsampling used during training. 
Research Opportunities: 
• Self-supervised learning: Models can learn degradation patterns directly from unlabeled real-world 

data. 
• Degradation estimation modules: Networks that first predict degradation characteristics and then 

adapt SR accordingly. 
• Blind SR models: End-to-end frameworks that do not require prior knowledge of degradation types. 
Expected Impact: Robust SR systems that generalize across diverse real-world conditions without 
retraining for every new domain. 
 
C. Arbitrary and Continuous Scale Super-Resolution 
Motivation: Practical applications often require zooming at arbitrary, continuous scale factors rather than 
fixed integers. 
Research Opportunities: 
• Continuous coordinate networks: Representing images as continuous functions rather than discrete 

grids, en- abling flexible resolution outputs. 
• Dynamic upsampling filters: Generating upsampling kernels conditioned on any arbitrary scale 

factor. 
Expected Impact: Next-generation SR systems capable of smooth, flexible zooming experiences, 
particularly valuable in medical imaging, satellite imaging, and interactive media. 
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D. Multi-Task and Cross-Modal Learning 
Motivation: Images often serve as inputs to downstream tasks like detection, segmentation, or 
classification. SR outputs must optimize not only for visual quality but also for task performance[26]. 
Research Opportunities: 
• Task-driven SR: Joint optimization where SR is trained along with detection/segmentation heads. 
• Cross-modal SR: Integrating information from multiple modalities, such as depth maps, semantic 

labels, or text descriptions, to guide better super-resolution. 
Expected Impact: SR systems that are ”task-aware,” boost- ing the performance of higher-level vision 
pipelines, and capable of richer scene understanding. 
 
E. Perception-Oriented Super-Resolution 
Motivation: Traditional pixel-wise evaluation metrics (e.g., PSNR) do not always align with human 
perceptual judgment. 
Research Opportunities: 
• Adversarial learning (GANs): Employing discrimina- tors that evaluate multi-scale texture realism. 
• Perceptual quality metrics: Training with losses based on LPIPS, NIQE, or new human-aligned 

perceptual mea- sures. 
• Multi-scale perceptual loss functions: Ensuring that fine details across all scales are realistic and 

sharp. 
Expected Impact: SR images that look convincingly natu- ral to humans, even if traditional metrics show 
moderate gains. 
 
F. Explainable and Transparent SR Networks 
Motivation: As SR systems become increasingly complex, understanding their internal decision-making is 

crucial for debugging, trust building, and scientific applications (e.g., in healthcare). 
Research Opportunities: 
• Attention visualization: Analyzing which scales and spatial regions contribute most to 

reconstruction. 
• Feature attribution techniques: Mapping how input features at different resolutions influence the 

output. 
• Model interpretability frameworks: Dedicated tools for inspecting and explaining SR models. 
Expected Impact: Transparent SR models suitable for safety-critical applications like medical diagnostics 
and remote sensing. 
 
G. Super-Resolution Beyond Natural Images 
Motivation: Most SR research focuses on natural scenes, but there are growing demands in specialized 

fields. 
Research Opportunities: 
• Medical image SR: Enhancing MRI, CT, and ultrasound images for better diagnosis. 
• Remote sensing SR: Improving resolution of satellite and aerial imagery for urban planning, 

agriculture, and defense. 
• Scientific data SR: Enhancing microscopic, astronomi- cal, or volumetric data. 
Expected Impact: Domain-specific SR models could un- lock new scientific discoveries and industrial 
applications. 
 
H. Integration of Transformer Architectures 
Motivation: Transformer-based models have revolutionized vision tasks with their strong global context 
modeling capa- bilities. 
Research Opportunities: 
• Vision Transformers (ViTs) for SR: Designing multi- scale SR networks based on transformer 

blocks. 
• Hybrid CNN-Transformer models: Combining local feature extraction of CNNs with the global 

attention of transformers. 
• Scale-aware attention mechanisms: Using transformers to dynamically select important scales 

during reconstruc- tion. 
Expected Impact: Potential breakthroughs in capturing both local texture details and long-range 

dependencies for ultra-high-quality SR. 
I. Environmentally Sustainable SR Research 
Motivation: Training large-scale deep networks has signif- icant environmental and financial costs. 
Research Opportunities: 
• Energy-efficient training techniques: Reducing carbon footprint via algorithmic optimizations. 
• Low-resource SR models: Developing competitive SR models that require fewer training 
resources. 
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Expected Impact: Green AI initiatives will ensure the sustainability of SR research for future 
generations. 
 
J. Summary 
Future directions in multi-scale super-resolution research aim not just at improving image quality, but 
also at achieving: 
• Greater efficiency, 
• Better generalization, 
• Enhanced realism, 
• Richer understanding, 
• Broader applicability across domains, 
• And deeper environmental responsibility. 
By pursuing these avenues, the next generation of SR models will become even more powerful, versatile, and 
impactful across scientific, industrial, and consumer applications. 
 

VII. CONCLUSION 
 

In this review, we comprehensively explored the role of multi-scale deep neural networks in advancing the 
field of image super-resolution (SR). We began by establishing the importance of super-resolution in a wide 
range of appli- cations[27], from medical imaging to entertainment media, and highlighted the evolution 
from traditional interpolation methods to modern deep learning-driven techniques. 
We analyzed the motivations behind multi-scale approaches, emphasizing how the ability to extract and 
fuse information at multiple resolutions enables networks to better reconstruct complex image structures, 
textures, and fine details. Through a detailed survey of major multi-scale SR models—such as LapSRN, MS-
LapSRN, RDN, ProSR,[28] and Meta-SR—we illustrated how different architectural innovations tackle chal- 
lenges like scale variation, computational efficiency, and flex- ibility across scaling factors. 
Performance evaluation across benchmark datasets showed that while significant progress has been made in 
enhancing both quantitative (PSNR, SSIM) and qualitative (perceptual quality) outcomes, trade-offs between 
model complexity, infer- ence speed, and reconstruction fidelity remain prominent[29]. Our detailed analysis 
highlighted that different models present varying strengths depending on the target application require- 
ments. 
We identified persistent challenges in current multi-scale SR research, including computational overhead, 
generalization to real-world degradations, limitations in arbitrary-scale SR, and the critical need for 
explainability and task-oriented optimiza- tion. Addressing these challenges is crucial for broadening the 
deployment of SR systems beyond controlled research environments into real-world, dynamic scenarios[30]. 
Looking ahead, we outlined a rich landscape of future re- search directions, encompassing ultra-lightweight 
network de- signs, realistic degradation modeling, continuous-scale super- resolution, multi-task and cross-
modal learning, perception- oriented training strategies, explainable SR architectures, and the extension of 
SR to specialized domains such as med- ical and scientific imaging. The potential integration of 
transformer-based architectures and environmentally sustain- able research practices also opens new 
avenues for innova- tion[31]. 
In conclusion, multi-scale deep learning has unlocked un- precedented potential in image super-resolution, 
yet the field remains vibrant with opportunities for further breakthroughs. By embracing efficiency, 
adaptability, and human-centric eval- uation, the next generation of multi-scale SR models can achieve not 
only superior image quality but also broader, more responsible real-world impact[32]. 
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