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ARTICLE INFO ABSTRACT 
 The global population is projected to reach over 9.5 billion and possibly up to 10 

billion by 2050. Its growing economy requires increases in sustainable food, fuel, 
feed, and fiber for global security. The agricultural sector faces grand challenges to 
meet these increased demands under the constraints of climate change and 
dwindling natural resources with limited arable land and fresh water. Combination 
of intensifying production and expanding crops has led to serious challenges such as 
worsening soil and water quality, greenhouse gas emissions, and crop productivity 
sustainability. Sustainability of agriculture under the strain of grand challenges 
depends on coalescing affordable and reliable sensors and IoT instrumentation, 
advanced computing power and algorithms in data processing and machine learning 
modeling, and secure internet connections with portable and user-friendly interfaces 
and user experiences. The rapid adoption of IoT data sensing technologies in 
agricultural settings brings new opportunities to help bridge farming practice and 
rural health outcomes at both behavioral and clinical levels. While sensing 
technologies are arguably more affordable, accessible, and versatile than ever, the 
sheer amount of data is overwhelming. 
In agriculture, farm management systems and other platforms have been providing 
various forms of decision support for on-farm data collection and analysis. While 
increased data innovations, availability, and digitization are advantageous, they 
bring data inflation challenges and data-related issues to agricultural producers. Data 
generated from different disciplines can be highly heterogeneous. Datasets across 
disciplines may not share the same ontology, modality, or format. The growing 
amount of data diversity presents additional challenges. If left untamed, it may lead 
to underutilization of data information and opportunity, mistaken insights, and 
degraded trust. Agricultural data, such as remotely-sensed satellite, aerial, drone, 
weather station data, and on-site soil, elevation, land use, pest, and irrigation data, 
are often big and complex. The data types are highly structured and may contain both 
temporal and spatial dimensions. First, data is collected by various types of telemetry 
systems and machine-level devices. Then, data is exchanged and transmitted from 
cloud-based systems for data fusion and cross-scale information extraction. Standard 
data sharing protocols are needed to ensure the cross-compiling capability of data 
services and applications such as remote sensing data safety and security. 
 
Keywords: Data Analytics, Cloud, Cyber-Physical Systems, Internet of Things, 
Sustainable Agriculture, Smart Farming, AI. 

 
1. Introduction 

 
Agriculture and human health are intimately linked. Agriculture provides food, fiber, and biofuel, affecting 
health through nutrition, food safety, price stability, and environmental impacts. Conversely, health status 
affects agriculture through decisions about farming practices and crop/animal portfolio. Health and 
agricultural systems are integrated with water and environmental systems. To achieve both improved 
agricultural productivity and health outcomes, explicit consideration of synergies and trade-offs is needed 
across the agrifood system. There is demand for a holistic African agri food health model for optimizing 
investments and policies toward improved outcomes across all four sectors. Despite high levels of investment, 
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outcomes in Africa contrast sharply with those in wealthier regions. The growing availability of detailed and 
long-term datasets offers unprecedented opportunities to understand and improve health and agricultural 
outcomes. Important knowledge, however, is still missing on the interlinkages and spillovers between health 
and agricultural choices and outcomes in Africa. 
While there has been extensive work modeling either the agrifood system or its relationship with health, to 
date, there is no modeling of the intertwined agricultural and health decision-making systems. More broadly, 
the agri-health models that do exist are interdisciplinary but often a simple aggregation of agriculture and 
health sub-models. This approach lacks attention to feedback loops, limit cycle behavior, and other emergent 
phenomena between health and agriculture. To bridge health and agricultural models and with the aim of 
better understanding agrifood choices, a multi-agent farming game model and an epidemiological state 
variable agent-based health choice model are integrated. The two components and their interactions are 
described, as well as key calibration and data requirements. The design of the application including the 
visualization tools for empirical use is also overviewed. Through a detailed description of the integrated 
modeling, this framework for linking agriculture and health systems and its application to long-term data in 
Latin America are put forth. It is hoped that this pioneering contribution will activate a more significant focus 
on the interconnections between agriculture and health in the world. 
The mission is to deliver high-priority, on-demand information products and services to stakeholders for 
environmental and agricultural monitoring and management using cloud-based analytics, integrated in the 
USDA’s Agricultural Research Service, U.S. Department of Agriculture High-Performance Computing and 
Analytics for Data-Intensive Research Efforts. Data from ground-based sensors and remote sensing satellites 
can be used to derive high-value information products related to weather, soil, plant, pest, and socio-
economics, and integrated to support forecasting and long-range decision-making. Cloud analytics, combined 
with open access data and data sharing services, automated products, and interoperability of models, can 
extend the scientific data life cycles and increase the public benefits from investments in research and data. 

 

 
Fig : 1 Future of sustainable farming 

 
1.1. Background And Significance                                           
As the population continues to grow and climate change and dwindling natural resources pose ever-increasing 
hurdles, the demand for food, fuel, feed, and fiber is increasing tremendously . It has been recognized that food 
security and safety can be achieved only with sustainable agricultural practices. Sustainable agriculture aims 
to ensure food security and farmer profits, while conserving the natural resources and environment for future 
generations. Data innovation is in urgent need to secure and improve the productivity, sustainability, and 
resilience of our agricultural systems. The rise of various sensors and Internet of Things (IoT) instrumentation 
has made it practically possible to collect, integrate, and analyze data in real-time. This tremendous amount of 
data poses challenges to the storage and question answering systems of data management and makes current 
data management practices inefficient. 
In the meantime, data generated from different disciplines are usually highly heterogeneous, which prevents 
effective data sharing and reuse. Currently, approaches employed to data archive with minor immersive on-
farm data and end-user services are not true sense data systems. A new data management infrastructure is in 
urgent need to be designed according to the principles of Findable, Accessible, Interoperable, and Reusable. To 
overcome these challenges, we proposed a conceptual framework of Agriculture Data and Management 
Analytics consisting of three components: i) modular and extensible data acquisition and storage, ii) user-
centric data management and knowledge generation, and iii) smart and scalable data analysis and analytics. 
The architecture is built based on the principles and is able to be intelligently integrated with the data systems 
over cloud systems. 

  



5161                   Sathya Kannan / Kuey, 29(4), 9988 

 

Equ : 1 Crop Yield Prediction with Environmental Factors 

 
 

2. The Role of AI in Agriculture 
 
In recent times, Artificial Intelligence (AI) techniques have been widely adopted in almost every field. AI has 
brought significant benefits to agrifood systems’ sustainability, food security and reduction of food waste. Most 
of the intelligent technologies used in agriculture rely on controlled data capturing equipment like sensors and 
drones to observe environmental changes and leverage appropriate AI methods to make conversions smarter. 
This chapter discusses AI techniques for crop yield prediction, crop disease identification, crop growth 
monitoring, food waste reduction and smart fisheries. 
In terms of the first challenge of data collection, satellite-based Remote Sensing (RS) data can be exploited for 
agriculture-related tasks at a coarse resolution within large areas. However, the problems induced by these 
costly methods include the limited image resolution, still resulting in down-sampled information and high 
hidden figure costs. In recent years, earth-observing satellites like Sentinel-2 and commercial satellites have 
provided high-resolution RS data and new, diverse data collections to match different requirements. However, 
such rich, complex RS data still needs manual exploration of relevant knowledge. Intensive-scale image 
searching and timely data processing also suffer as point clouds and images become bigger. 
 
Equ : 2 Sustainability Index Score 

 
 

3. Sustainable Agriculture Practices 
 
Sustainable agriculture is an important part of agricultural production systems in the 21st century, and how to 
implement them sustainably is a core issue in agronomy, ecology, economy, and sociology. Sustainable 
agriculture is defined formally as a production system that can maintain its productivity and usefulness in the 
long term. The recent interest in sustainable agriculture resulted in some practical developments, including 
organic agriculture, agro-ecology, conservation tillage, integrated pest management, etc. Given the multiple 
dimensions and consequences of agriculture, food production systems should be assessed holistically. This 
means that all relevant environmental, social, and economic consequences of agricultural practices should be 
considered in the evaluation of sustainability. 
It has become widely acknowledged that a farming system can only be called sustainable if there is a long-term 
positive trend in all its relevant elements, in the face of environmental, economic, and social factors controlling 
its functioning. However, the divergence of the short-term objectives and long-term values, as well as the site-
specific nature of these sustainability problems increases the importance of investigating contextualized 
balances on diverse scales and applying deliberative approaches in problem framing and (re)assessment. 
Therefore, the use of interdisciplinary knowledge, modeling, and stakeholder input is needed in the 
development of site-specific measures of sustainability. 
Machine learning and deep learning applications could support consumers and producers in addressing some 
challenges of agro-food systems. These applications can help to achieve sustainable farming by mitigating risks 
of pest and diseases, reduce environmental impacts, lower production costs, enable targeted actions, support 
farmers’ decision-making, improve collaboration, prevent food waste, enhance prediction models for financial 
and weather conditions, and eventually improve yield and food quality. Overall, machine learning and deep 
learning based agro-food technologies are being diffused only in a few specific sectors and higher investments 
in R&D are needed, especially in less affluent regions. 

 

Equ : 3 Farmer Health Risk Assessment 
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3.1. Crop Yield Prediction                                                    
In agriculture, yield prediction systems have been widely used to provide insights to farmers about potential 
crop productivity, food security, policy assessment, yield gap analysis, and resource usage. Agricultural yield 
depends on a complex combination of biophysical, managerial, socio-economical, climatic, and technological 
inputs, along with the interplay of numerous processes that are still not completely understood. Current efforts 
in the field are focused on data-driven approaches. The first study assessed the efficiency of winter wheat yield 
predictions in Ukraine using different methods. The first was based on data from GlobCover maps with 70 
types of land cover and land use, which were aggregated according to WSN site numbers used to delineate the 
initial datasets. This map was extrapolated through linear regression models to produce 1 km2 crop yield data 
for grid cells where the Ukraine was cultivated with wheat. This provides essential information on the spatial 
structure of winter wheat yield predictions. An empirical model based on meteorological observations selected 
using the forward stepwise method was evaluated for its prediction success. This method exploits the fact that 
cumulative precipitation, extended over an appropriate time scale prior to harvest, is one of the most important 
explanatory variables in the prediction of crop yield in general. WOFOST is a widely used crop growth 
simulation model that simulates biophysical processes and the interaction with external climatic forces that 
determine the potential growth of a crop. The different yield estimation methods were evaluated in a 2–3 
months period that precedes the harvest, where adequate data are available for prediction. The second study 
proposed a combined approach using satellite and climate data to predict wheat production in Australia. Data 
from sea surface temperatures, Niño3.4 indexes, rainfall, and European Centre for Medium–Range Weather 
Forecasts 45 years reproduced data were used along with a combination of different traditional and machine 
learning approaches. Results comparing traditional methods and machine learning approaches are presented. 
The study shows that combining climate and satellite data to predict wheat production in Australia can achieve 
much higher performance compared with state-of-the-art systems. The third study focused on a multi-task 
learning algorithm for predicting yield in cotton fields from MODIS NDVI images using historical production 
reports. This work exploits the spatial and temporal features that can be learned from NDVI images to model 
variations in soil, climate, tillage, and irrigation conditions. Moreover, it also proposes a combination of a 
model that learns to predict yield jointly for all fields with per-field models. The fourth study applied transfer 
learning to predict soybean yield for Argentina and Brazil using a trained model on the latter and then 
augmented with Argentine data. The results were promising, with a noticeable increase in prediction accuracy 
for Argentina and minor improvements for Brazil. 
 

 
Fig : 2 Crop yield prediction 

 
4. Impact of Agriculture on Rural Health 

 
In the 21st century, agriculture remains fundamental to economic growth, poverty alleviation, improvement in 
rural livelihood, and environmental sustainability. Three-quarters of the world’s poor live in rural areas, 
particularly in Asia and Africa, and depend on agriculture as their primary source of livelihood. Ninety percent 
of the world’s billion impoverished and malnourished people live in low-income rural areas; seventy percent of 
the population in lower-middle-income countries live in rural areas. Apart from being the mainstay of their 
livelihood, agriculture is the dominant sector driving their economic growth, employment, and income. 
Agriculture can foster economic growth and job creation, particularly in Africa, where many countries are 
failing to create jobs at a rate equal to population growth. This report provides an overview of the impact of 
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health issues on farm-level productivity and decision-making, and the impact of agriculture on health. Findings 
are based on a review of relevant studies of agricultural regions throughout the developing world. 
Agriculture underpins the health of rural households. It provides income that makes households resilient to 
health shocks; it provides food to meet their nutrient and energy needs; it provides medicinal plants for treating 
ailments. Agriculture provides a source of employment for people affected by illness in the farm household. 
Where there is housing security, agriculture increases the value of assets and provides collateral for credit. But 
agricultural systems can also have negative effects on health. Agricultural development may lead to 
environmental change with adverse health impacts. Mechanization of agriculture can increase the incidence of 
non-communicable diseases, such as respiratory illnesses and occupational injuries among farm workers. 
Growth in agriculture has been associated with an increase in the burden of food safety, nutrition, and vector-
borne disease. Soil degradation can contribute to adverse health outcomes through decreased productivity, 
increased labor input, and decreased ability to adapt to climate change. 

 

5. Data Collection Techniques in Agriculture 
 
In recent years, precision agriculture that uses modern information and communication technologies is 
becoming very popular. Raw and semi-processed agricultural data are usually collected through various 
sources such as the Internet of Things (IoT), sensors, satellites, weather stations, robots, and farm equipment. 
Agricultural datasets are very large, complex, unstructured, heterogeneous, non-standardized, and 
inconsistent. Hence, agricultural data mining is considered a Big Data application in terms of volume, variety, 
velocity, and veracity. It is a key foundation to establishing a crop intelligence platform, enabling resource-
efficient agronomy decision-making and recommendations. 
There are various sources of data for agriculture. A crop dataset is a compilation of raw data for an area covered 
during a period. A processed crop dataset is a collection of data for a specific area at a specific time based on 
raw data. Crop data collection is a necessary step in studying and monitoring crop development or change. 
Cloud-based agricultural surveillance services give agronomists a chance to analyze farming and rural health 
datasets comprehensively. By utilizing machine learning algorithms such as CNN, RNN, and Random Forest, 
they can compare the differences in farming actions and levels, the distinctions in the generation of crop yield 
impacts, and the fluctuations in the lifestyle of animal husbandry and aquaculture, so the corresponding 
movements can be taken timely. 

 

 
Fig : 3 Data Collection Techniques in Agriculture 

 
5.1. Soil Health Monitoring                                               
Soil is an important resource for human survival, and unique soil ecosystem scientists have defined soil health 
as an integrated expression of numerous soil functions. Understanding soil health analysis methods can help 
cultivate sustainable farming systems, combat environmental risks, and enhance food security. The ongoing 
agronomic revolution is based on innovative agricultural practices to ensure timely, enough, safe and healthy 
food for mankind. Recent advances of Internet of Things (IoT), machine learning, and deep learning are 
expected to accelerate the growth and adaptation of precision agricultural technologies. To help farmers 
identify potential soil health issues well in advance, an IoT-based soil health monitoring system was designed 
and developed using a range of state-of-the-art technologies, including soil moisture sensors, chemical sensors, 
microprocessors, cloud platforms, and deep reinforcement learning algorithms. When a specific soil health 
index (i.e., accurately and timely determined soil moisture and soil temperature) was exceeded, the intelligent 
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monitoring system was designed to send relevant notifications to farmers’ smartphones via a mobile phone 
application. 
A parallel computing framework was developed to analyze the physical parameters captured by sensors. 
Monitoring and inference tasks were systematically categorized, and 26 algorithms were implemented to 
address them at different nodes, including humidity, light, moisture, temperature, pressure, and traveling 
distance monitoring, and tree growth prediction. Data communication and mining strategies were 
implemented to reduce the amount of transmission and improve accuracy. Software agents were used for task 
encapsulation, service discovery, fault tolerance, and user interaction. The above-mentioned components were 
integrated into a prototype platform that can be deployed in real environments. Field experiments validated 
the performance of the proposed system, demonstrating its capability of multi-sensor distributed perception 
and efficient data processing and maintenance. 

 

6. Cloud Computing Infrastructure 
 
Sustainable and resilient rural development and growth of smart and inclusive communities have become 
global priorities because they are of developmental significance to developing countries and emerging 
economies, particularly those in Africa. The goal is not just to reduce poverty and inequality but also to include 
new tools and techniques towards stimulating the growth of digital economies in agriculture, finance, health, 
education, and business. The COVID-19 pandemic recently highlighted this. Policy guidance is available about 
emerging capabilities in AI to develop context-specific applications, with open-source code bases to build, train, 
and test the models. AI-driven solutions to agricultural problems constitute the primary focus. An analytical 
sub-area is focused on, examining the state-of-the-art of the more advanced capabilities in AI and machine 
learning (ML) techniques for crop, field, and pest classification using Earth observation (EO) data or seasonal 
monitoring using time series EO imagery. AI models and approaches for predicting weather, yield, soil 
moisture, and water availability using EO data, self-developed meteorological data, and soil property maps are 
elucidated. Policy recommendations are available on how these capabilities could be harnessed for rural and 
agriculture sector advancement in Africa, notably by countries in the southern tier. 
Cloud computing stores and manages data in an Infrastructure-as-a-Service (IaaS) model for high-level 
processing and analysis of agronomic risk factors. However, cloud technology facilitates more than the mere 
delivery of on-demand computing power to researchers. Completely heterogeneous big data challenges the 
cloud infrastructure on which KDD systems depend on interacting streams of condition and measurement data. 
Moreover, commensurate choices of data acquisition frequency and precision do not assure correct 
representation of data integration. Appropriate choices of the many data abstraction techniques which 
differentiate data representation without corrupting information content form a major challenge. The 
evidential uncertainty in outcome decisions arising from uncertain data have their own challenges. Historically, 
large data were handled using parallelism over a local processor meta-structure and this approach remains an 
ongoing research endeavour. Alternative solutions to the ‘big-data’ computing problem have emerged in the 
form of massive cloud infrastructures. In contrast, fog computing proposes delivery of data-centric services at 
the network edge, within close proximity to users to meet larger needs for bandwidth, latency and availability. 

 

 
Fig : 4 Cloud Computing Infrastructure 

 
7. AI Algorithms for Data Analysis 

 
Agriculture has a critical role to play in the economies of developing countries, as it directly supports the 
livelihoods of over a billion smallholder farmers. Agricultural productivity and income determine individual 
and collective welfare. However, over the last several decades, productivity in agriculture has remained 
stagnant. Information and communication technology has been applied in agriculture for capacity building and 
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knowledge transfer. An analysis of the challenges and existing approaches in applying ICT in agriculture 
prompted the choice of cloud-based analytics as the key approach to effectively tackle these challenges. 
Solutions using this approach have been deployed in early feasibility studies, providing at-scale yields of 
benefits to farmers during the cropping season. 
Cloud-based analytics is a cloud-hosted computing architecture that can be used for high-performance 
computing and analysis of huge datasets via the internet. Combining high-performance computing with the 
cloud transcends the limits of conventional computing and improves the speed, accuracy, and adoption of AI-
enabled analytics. Means have been devised to understand the farming process and find the health outcomes 
of the crops and livestock. These means include agent-based simulation methods, AI-powered analytics, and 
social and natural language processing. Crop growth, livestock management, farm economics, and farmers’ 
interactions with both physical and virtual agents have been simulated, based on estimates from agronomic 
and economic models. There are two ways that AI enables cloud-based analytics: without AI-enabled analytics 
and with AI-enabled analytics. AI models and simulations have been proposed and under development. Data 
collected by the farmers using recurring digital instruments and devices or by administrative institutions and 
their virtual agents using internet-enabled sensors and scanning instruments can be utilized by the analytics 
process. The intelligence process includes pre-processing of data, interpreting data, and expediting modelling 
and simulation processes, and uses AI models that can classify and justify health outcomes based on the 
findings of physical observation. 
Local and national technocrats can use cloud-based platforms to access data that targets farmers without 
administrative involvement. In this modality, the data extracted from the farmers are aggregated and stored in 
cloud databases, which are accessible using analytics services across varying capabilities. The AI models can 
leverage a growing ensemble of crowd-sourced data from farmers. In the case of social agents funded by 
national administrations, outcomes from cloud-based modelling and simulation can be used to produce 
machinable actionable insights in natural languages. Based on the modelling and simulation outputs, 
unstructured observations can be classified, and grammatically structured responses can be formulated using 
Natural Language Processing models. 

 

 
Fig : 5  AI Data Analysis Techniques 

 
8. Case Studies of Successful Implementations 

 
The implementation of cloud-based deep learning and machine learning techniques in agriculture has the 
potential to increase yield, save costs, and minimize the adverse effects of excessive fertilizer application. 
Machine learning techniques can be used to recommend crops for a farm's soil characteristics. The data 
requirements for such solutions are easily obtainable, and the presented methods are low-cost and low-
maintenance, contributing to making agriculture more sustainable. Urban gardening is on the rise in recent 
years. There is a growing need to produce fresh and healthy foods closer to consumers for improving a healthy 
living in cities, which are believed to be the future trend. To address this concern, precision gardening using 
precision agriculture technologies for urban agriculture can be considered for smart city solutions. A fog 
computing-assisted Internet-of-Things framework for healthcare precision gardening in urban agriculture, 
consisting of various sensors to monitor environmental conditions in a rooftop garden. Smartphones as user’s 
IoT devices using a mobile web-based platform can send modification commands to actuators for controlling 
environmental conditions. The proposed two-layer fog computing architecture can intelligently process data 
and forward the processed results to cloud servers for more in-depth analysis. 

 

8.1. Case Study 1: Precision Farming                                 
Precision farming, aimed at optimizing the efficiency of agricultural production and ensuring global food 
security in a sustainable manner, has emerged as a new generation form of agriculture. It integrates advanced 
hardware and cloud-based analytics with AI and deep learning for intelligent analysis to help farmers manage 
their crops in real time. There is a suite of physical devices such as cameras and robots for data collection, 
hardware infrastructure such as servers and clouds for efficient data storage analytics and model training, and 
advanced algorithms for automated data analytics and recommendation. The physical devices are usually 
deployed on the edge and the data is streamed over the cloud, where deep learning models are trained. The 
trained models predict the condition of individual plants and generate data processing orchestration graphs to 
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compute recommendations for farmers in a real-time fashion. On the receipt of the recommendations, the edge 
devices invoke actuators to execute the actions such as broadcasting alerts to individual farmers or triggering 
robots to perform on-farm actions, which complete the data processing pipeline. The physical devices are used 
in a fully automatic or semi-automatic manner, depending on their characteristics, the algorithms running on 
them, and their interaction with farmers. The data processing orchestration graph is also auto-generated by 
the Change-point Detection (CPD) framework. With significant improvement in crop yield and food 
production, a growing range of practical systems are being deployed in farms on a daily basis. The deployed 
solutions can be categorized into the following five groups with different characteristics and utilities: remote 
sensing; precision spraying; precision harvesting; animal intelligent service; and information dissemination. 

 

 
Fig : 6 AI in Agriculture Statistics 

 
9. Conclusion 

 
This article reviewed the analytics phase of a framework to explore machine learning and cloud services for 
agricultural cost-sensitive scenarios. Key specifications of the machine-learning data processing cost-
optimization problem were discussed. For example, a new multimillion-dollar fine-tuned deep learning model 
using cloud-based big data capabilities reduces agricultural markup costs, but is found to increase annual costs 
associated with prediction backtesting and retraining. These costs were approximated in six flexible ways suited 
for agribusiness and cloud-based processor scale. Based on these cost approximations, a greedy algorithm 
heuristic framework for adding and retraining a ground-up model to a telegraphic model was created. This 
framework was able to offset perceived increases in prediction costs associated with a deep learning model 
desired for solutions to complex decision making. These theoretical developments are integrated into an 
analytics approach for agricultural ML applications, which could in turn foster adoption of such capabilities in 
sustainable, data-driven agriculture practices. 
Tractability conditions for which the cost optimization problem is guaranteed to asymptote were shown, as well 
as for which ground-up models need not be a part of the solution. An experimental framework that builds on 
big data and cloud machine learning engine products for yet-to-be-analyzed agribusiness situations was also 
introduced. In developing the infrastructure for experimentation on a real agribusiness application, profound 
interactions between machine learning analysis and cloud services discovery were found. Feedback during 
development led the analyst to innovation that may not have been possible without existing cloud-oriented 
infrastructure. As cloud storage and analysis capabilities are becoming mainstream, new synergies between 
machine learning and cloud application development capabilities will increasingly foster data drives for 
agricultural analytics and product offerings. This will be driven in part by the resurgence of entrepreneurship 
due to the attractiveness of open-source scientific and computing tools. 

 

9.1.Future Trends                                                                  
Emerging technologies can provide creative solutions to tackle a wide range of issues in farming practices, 
enhancing productivity while minimizing environmental impacts. Therefore, incorporating big data and 
artificial intelligence knowledge in farming practices can optimize the yield of agricultural products while 
maintaining rural health and thereby having a positive effect on rural economies. Cloud-based solutions can 
transform large datasets into actionable insights through user-friendly interfaces for farmers, local 
governments, cooperatives, farm equipment manufacturers, etc. Thereby creating just-in-time information 
delivery systems instead of the classic one-way channels, which rarely became actionable insights (particularly 
for crop-monitoring). In parallel, cloud-like services and edge services can enable sustainable farming practices 
such as optimal irrigation scheduling, pesticide application, and planting distance. 
Simple local solutions running on the tractor or drone can provide immediate outputs to farmers after data 
acquisition. The impacts of local climate and/or airborne diseases can be quantified using remote sensing 
information on cloud services outside the edge services. Bridges between in-farm sensors, UAVs, and cloud 
services should be constructed. It is challenging for the joint use of multispectral satellite imagery and drone-
acquired data, as with traditional in-sensor preprocessing applications. On-demand and/or small-budget cloud 
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deployments could solve that problem. In this agricultural cloud-based product, capabilities and knowledge 
tightly interconnected with the type of business role can be reached at low costs in exchange for storing data 
online. Comprehensive risk management, including the risks of the growing season and yield losses may be 
designed for crops with a large dataset in contrast for small datasets. Farmer variance may be connected with 
local cooperatives, which might have access to larger datasets in addition to model training purposes. Cloud 
and fog edge end servers may provide different services whose selective usage would benefit both the farmers 
and farm equipment manufacturers. 
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