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The increasing complexity of programming education necessitates a deeper 
understanding of student challenges and preferences to enhance learning 
outcomes. This study addresses this critical gap by exploring students’ 
perceptions of programming assignments using advanced computational 
methods. This research investigated three key questions: the major challenges 
students face in programming, their preferred methods for skill assessment, and 
the skills they associate with effective programmers. The methodology involved 
a survey of 508 participants, including Bachelors of Computer Application (BCA), 
Master in Computer Application (MCA), and alumni cohorts, utilizing mixed- 
format questions. Natural language processing techniques, including Term 
Frequency-Inverse Document Frequency (TF-IDF) with K-means clustering and 
VADER sentiment analysis, were employed to analyze the responses. Key 
findings revealed five distinct clusters of challenges with prevailing logic and 
syntax-related difficulties, a strong preference for error-explanation-based 
assessments over traditional methods, and prioritization of problem-solving and 
analytical thinking skills, accompanied by a neutral sentiment toward 
programmer attributes. These insights highlight the diverse obstacles that 
students encounter and the skills they value. These implications are significant 
for educational practice, suggesting tailored teaching strategies to address 
identified challenges and redesigning grading systems to incorporate interactive 
feedback mechanisms. This study contributes to the field by demonstrating the 
efficacy of natural language processing (NLP) and machine learning (ML) in 
educational data mining and offering a scalable approach to curriculum 
development. In conclusion, these findings lay the foundation for data-driven 
improvements in programming education with the potential to shape future 
pedagogical innovations and technology-enhanced learning environments. 

 
Keywords: Programming education, Natural Language Processing, Student 
perceptions, Programming challenges, Assessment methods, Educational data 
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1. Introduction 

Programming education is vital for equipping students with the technical competencies required in the 
software development and computational fields, where coding skills are increasingly foundational. As class 
sizes grow, the traditional manual grading of programming assignments struggles to provide timely and 
consistent feedback, prompting a shift toward automated solutions [1]. While these systems efficiently evaluate 
code correctness, they often neglect behavioral attributes, such as engagement, collaboration, and debugging 
proficiency, which shape students’ learning trajectories [2]. Such attributes, observable through interactions 
in Moodle and various learning management systems (LMS), offer critical insights into the coding process; 
however, their integration into assessment frameworks remains underexplored. This study leveraged students’ 
perceptions to address this shortfall, enhancing programming pedagogy by aligning assessment with learner 
needs, and potentially improving skill acquisition and retention. 
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Conducted with 508 undergraduate and postgraduate students, the survey used a mixed-method approach 
with keyword extraction and sentiment analysis to examine perceptions of programming challenges, 
assessment preferences, and essential coder abilities. As an initial step toward modeling student behavior in 
programming assignments, this study informs the design of an autograding system that evaluates both code 
correctness and behavioral metrics, such as participation and debugging skill. By capturing students’ 
perspectives, it bridges the conventional grading limitations with a more comprehensive assessment paradigm. 
Programming education has evolved from theoretical lectures to practice-driven curricula, reflecting the 
discipline’s hands-on nature. Early assessments relied on manual code reviews, which, although detailed, 
became impractical with rising enrollments [3]. The emergence of automated grading tools in the 2010s, such 
as CodeGrade, introduced scalability, focusing on functional output evaluation [2]. In recent years, machine 
learning has enhanced the precision of these systems. However, their scope remains largely syntactic. 
Concurrently, research has highlighted the role of behavioral factors in coding mastery. Engagement, as 
evidenced by consistent coding efforts, supports conceptual understanding [4] , while collaboration via 
platforms such as GitHub fosters peer learning [5]. Debugging proficiency, a hallmark of skilled coders, is often 
underassessed [6]. These trends underscore the need to explore students’ perceptions of grade innovations 
that capture both the technical and process-oriented dimensions. 
This study investigated students’ perceptions of programming assignments, focusing on their reported 
challenges, preferred assessment methods, and valued coders’ abilities. Using a survey of 508 undergraduate 
and postgraduate students, keyword extraction and sentiment analysis were conducted to identify response 
patterns. While exploratory and survey-based, it establishes a foundation for modeling behaviors, such as 
engagement, participation, debugging, and collaboration, providing qualitative insights to guide autograding 
system design aligned with educational priorities. 
The primary objective is to analyze students’ perceptions through survey data to inform a behavior-aware 
autograding system. Specific objectives include: 

• To identify the significant challenges students encounter in programming and to illuminate the factors 
influencing engagement and debugging. 

• To determine the students’ preferred methods for assessing coding knowledge, user-centric automated 
grading development was supported. 

• To examine the abilities students associate with effective coders, guiding the integration of collaboration and 
debugging metrics into grading systems. 
Recent advancements in automated grading have improved syntactic evaluation, with studies such as [2] 
demonstrating the efficacy of machine learning in assessing code correctness. A Python grading tool that 
achieved high accuracy, but focused solely on the output [7]. The authors in [1] Analyzed engagement via 
submission patterns, but their findings stopped short of grading integration. The role of collaboration in 
learning has been explored through GitHub interactions [8], although quantitative assessments have remained 
elusive. The authors in [9] advanced a debugging assessment with semantic analysis; however, behavioral 
integration into autograding is rare. Perception-based studies have examined students’ attitudes toward 
programming [10]; however, they lack a focus on linking these perceptions to behavioral modeling for 
assessment. From 2015 to 2022, no study has systematically connected students’ perceptions of challenges, 
assessment preferences, and coder abilities to behavioral metrics for autograding. Perceptions shape coding 
behaviors, such as effort or teamwork, yet their role in informing grading systems remains underexplored a 
gap this study addresses with qualitative insights. To address this gap, this study poses the following research 
question: 

• (RQ1) What are the biggest problems that students face when learning code? 

• (RQ2) What ways do students think they are best at checking their coding knowledge? 
• (RQ3) What abilities do students think are important to the coders? 

The remainder of this paper is organize as follows. Section 2 reviews related work, synthesizing recent 
advancements in automated grading, behavioral analytics in programming education, and perception-based 
studies to contextualize the research gap. Section 3 details the methodology and describes the survey design 
with 508 undergraduate and postgraduate students, the five descriptive questions targeting challenges, 
assessment preferences, and coder abilities, and the application of keyword extraction and sentiment analysis 
to process responses. Section 4 presents the results, analyzing patterns in students’ reported challenges (RQ1), 
preferred assessment methods (RQ2), and valued coder abilities (RQ5), with findings derived from keyword 
frequencies and sentiment trends. Section 5 discusses the implications and limitations of these findings, 
including the exploratory scope of the survey. Finally, Section 6 concludes the study, summarizes key insights, 
and outlines future research directions, including the development of a behavior-aware autograding system 
and longitudinal validation of perception-driven interventions in programming education. 
 

2. Literature Review 

This literature review synthesizes research from 2015 to 2023, drawing on peer-reviewed articles from Scopus, 
Springer, ACM, IEEE, and Elsevier-indexed journals, to contextualize the analysis of 508 student responses 
from the Bachelor of Computer Applications (BCA), Master of Computer Applications (MCA), and Alumni 
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cohorts. The review is organized thematically to address common challenges in programming education, 
assessment methodologies, attributes of effective programmers, and identified research gaps, providing a 
foundation for the current investigation into programming difficulties, assessment preferences, and perceived 
skills using techniques such as TF-IDF, K-means clustering, frequency analysis, and VADER sentiment 
scoring. 
 
2.1 Challenges in Programming Education 
Programming education is fraught with challenges that hinder student success, with syntax comprehension, 
logical reasoning, and debugging emerging as predominant barriers. Lister (2016) conducted a qualitative 
analysis of novice programmers and identified syntax comprehension, logical reasoning, and debugging as 
persistent barriers, noting that such difficulties often arise from limited practical exposure. In a multi- 
institutional study published in ACM SIGCSE Bulletin, Study [11] found that introductory students struggle 
with algorithmic thinking across diverse settings. The Authors in [12] further explored cognitive barriers 
among Danish computer science students, emphasizing that abstraction and problem decomposition remain 
significant hurdles, particularly for undergraduate students. As per the Study [13], authors highlighted weak 
abstraction skills as a common issue, reinforcing the need for tailored interventions. These findings suggest 
that programming difficulties vary by experience level, underscoring the value of capturing student-reported 
challenges from diverse cohorts, including alumni, to inform tailored educational interventions, the focus of 
the current study. 
 
2.2 Assessment Methods in Programming 
The evolution of assessment methods for programming proficiency relevant to RQ2 has been a key focus in 
educational technology research between 2015 and 2023. Study [13] reviewed automated assessment tools 
highlighting their ability to provide immediate feedback through practical quizzes despite noting scalability 
limitations. The subjectivity of viva voce assessment was critiqued for subjectivity [14], advocating for 
structured tasks such as error identification, which aligns with the “Collect Response” option in this study. A 
study on global assessment preferences in Computer Science Education, suggesting a mix of methods to 
accommodate diverse learning styles yet noted a lack of cohort-specific data [15]. These studies indicate a 
diversity of approaches, revealing a gap in understanding student-preferred methods across BCA, MCA, and 
alumni groups, which this research addresses through its mixed-format survey design. 
 
2.3 Attributes and Skills of Effective Programmers 
Studies conducted from 2015 to 2023 examined the perceived skills and characteristics of successful software 
and web developers, resonating with RQ3. A surveyed on 250 students and professionals in ACM Inroads and 
identified problem solving, programming proficiency, and teamwork as critical competencies, with a growing 
emphasis on communication skills in agile environments [16]. Another study explored novice perceptions in 
Education and Information Technologies, noting that analytical thinking and debugging are highly valued, but 
often-underdeveloped [6]. The authors in [3] investigated skill gaps in curricula, highlighting the 
underrepresentation of version control and collaboration skills. This gap is particularly evident when 
considering alumni insights, which this study incorporates to bridge the academic and industry perspectives. 
 
2.4 Research Gaps 
Despite these contributions, significant gaps in the literature remain. Lister [17] and Simon et al. [18] identified 
programming difficulties, but did not propose interventions based on student feedback, limiting practical 
application. Assessment research in [19] focuses on instructor or system perspectives, overlooking student 
preferences that could enhance engagement, which is a focus of RQ2. Similarly, Fincher and Robins [16] and 
Joan O Vicente et al. [20] explored skill perceptions across diverse academic stages without linking them to 
curriculum design. Moreover, in their 2017 study, Wang et al. [21] noted challenges with low silhouette scores 
in the K-means clustering of educational texts, a concern addressed in this study by optimizing the cluster 
numbers to k=3, as informed by preliminary analyses. The inclusion of the BCA, MCA, and alumni cohorts 
mitigates the sample diversity limitation noted by Reinke et al. in their study [22], whereas Lweis [23] 
acknowledge ethical considerations by the anonymous survey design. By applying NLP and ML techniques to 
a mixed-format dataset, this study offers a novel framework for aligning student perceptions with pedagogical 
improvements and bridging these deficiencies. 
The literature underscores the complex challenges in programming education, evolving landscape of 
assessment practices, and diverse skill sets defining effective programmers, with NLP and ML techniques 
offering robust analytical tools. Identified gaps, such as limited sample diversity, ethical considerations in 
anonymous surveys, and underutilized qualitative insights, shape the current study’s approach. By leveraging 
a mixed-methods analysis of 508 responses from BCA, MCA, and alumni cohorts using TF-IDF, K-means 
clustering, frequency analysis, and VADER sentiment scoring, this research addresses these shortcomings, 
providing a nuanced perspective on student perceptions. The following sections outline the methodology, 
present the findings, and discuss the implications of building on this foundation to advance programming 
education research. 
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3. Methodology 
 
This study adopted a mixed-methods approach to explore student perceptions of programming assignments, 
integrating qualitative and quantitative analyses to address three research questions (RQs): RQ1, identifying 
areas of confusion in programming concepts; RQ2, determining preferred assessment methods; and RQ3, 
examining essential developmental skills. The methodology encompassed participant recruitment, survey 
design, data collection, pre-processing, and advanced NLP/ML techniques. A schematic overview of the 
research workflow is presented in Figure 1. 

 

 
Figure 1: Basic Methodology flow 

 
3.1 Participants 
This study involved 508 participants recruited from a single Indian higher education institution that offered 
computer science programs. The sample consisted of three cohorts: Bachelor of Computer Applications (BCA), 
Master of Computer Applications (MCA), and alumni of these programs. As presented in Table 1, the BCA 
cohort comprised 209 students (103 males, 106 females), the MCA cohort included 174 students (80 males, 94 
females), and the alumni group consisted of 125 graduates (66 males, 59 females). The overall gender 
distribution was approximately 49.4% male and 50.6% female, indicating a near-balanced representation 
across cohorts, which aligns with the increasing gender diversity in computing education (Sharma & Sharma, 
2019). Class-level data were not collected because the focus was on cohort- and gender-based perceptions of 
the programming assignments. This demographic composition facilitated comparative analyses across 
undergraduate, postgraduate, and post-graduate stages. 
 
3.2 Ethical Consideration 
Informed consent was not explicitly obtained owing to the anonymous nature of the survey and institutional 
approval for noninvasive data collection. This limitation is acknowledged in the Discussion section as it may 
impact the generalizability of the findings. 

Table 1: Participant Demographics 
Cohort Sample Size Gender 

Male Female 
BCA 209 103 106 
MCA 174 80 94 
Alumina 125 66 59 
Total 508 249 259 

 
3.3 Survey Design 
To ensure a balance between quantitative comparability and qualitative depth, we designed a mixed-format 
survey to elicit both structured and open-ended responses. The survey comprised three core research questions 
aligned with the study objectives. 

• RQ1: "In which specific areas of programming concepts do you find yourself CONFUSED or encounter 
the GREATEST DIFFICULTIES?" (open-ended). This question aimed to identify precise challenges (e.g., 
syntax errors and debugging) to inform targeted educational interventions. 

• RQ2: "Which of the following is the MOST EFFECTIVE way to measure student programming concept 
understanding?" (multiple-choice with options: 1) Collect Response on Program to Find and Explain Error, 2) 
Practical Quiz [Written and Lab], and 3) Viva). The purpose was to assess the preferred method for evaluating 
conceptual grasp and addressing issues, such as copying in practical quizzes or memorization in vivas, with the 
first option designed to verify the true understanding of program flow and execution. 
• RQ3: "What are the ESSENTIAL CHARACTERISTICS, SKILLS, and ABILITIES that a SOFTWARE or WEB 
DEVELOPER requires?" (open-ended). This question sought to elucidate the skills (e.g., problem solving and 
collaboration) and characteristics deemed necessary for developer success, linking perceptions to professional 
competencies. 
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The survey was administered online using Google Forms over a three-week period, in March 2022. Open- 
ended questions allowed participants to express nuanced perspectives, whereas multiple-choice questions 
facilitated quantitative comparisons across the cohorts. The survey underwent pilot testing with 15 students to 
ensure clarity and relevance, with minor revisions to the question phrasing based on feedback. 

3.3 Data Collection 
Data collection occurred over a two-week period in early 2022. Students were invited via email to voluntarily 
participate and to participate anonymously to encourage candid responses. A total of 508 valid responses were 
received, each containing answers to all five questions, yielding approximately. The responses were exported 
as CSV files for processing to ensure data integrity and traceability. 
The data processing and analysis workflow illustrated in Figure 1 guided the transformation of the raw survey 
responses into actionable insights. Python (version 3.9) was used in the Jupyter Notebook environment with 
libraries including NLTK, scikit-learn, pandas, and VADER. The workflow comprises of four phases: data 
collection, preprocessing, analysis, and visualization. 

3.4 Data Preprocessing 
Open-ended responses for RQ1 and RQ3 underwent preprocessing to ensure consistency in the NLP analysis, 
following the structured pipeline depicted in Figure 2, which was developed as an original representation of 
the study’s preprocessing workflow. The pipeline included: 
1. Tokenization: Responses were segmented into words using the NLTK word tokenization function (Bird 
et al., 2009). 
2. Contraction Handling: Contractions (e.g., "can’t") were expanded (e.g., "cannot") using a custom Python 
dictionary to standardize text. 
3. Stopwords Removal: Common English stopwords (e.g., "and," "the") were removed via NLTK’s 
stopwords list to emphasize meaningful terms. 
4. Lemmatization: Words were normalized to their base forms (e.g., "debugging" to "debug") using NLTK’s 
WordNetLemmatizer to reduce variation. 
Multiple-choice responses (RQ2) were encoded as categorical variables using pandas, excluding invalid or 
incomplete submissions, which yielded 508 valid responses. Data integrity was verified by duplicate and 
manual inspections. Pseudocode 1 outlines the pre-processing steps. 
 

Pseudocode 1: Pseudocode for Data Preprocessing 

Input: raw_responses (list of survey texts) 
Output: cleaned_tokens (list of processed tokens) 
for response in raw_responses: 

# Tokenization 
tokens = word_tokenize(response.lower()) 
# Contraction Handling 
tokens = [expand_contractions(token) for token in tokens] 
# Stopword Removal 
tokens = [token for token in tokens if token not in stopwords_list] 
# Lemmatization 
tokens = [lemmatizer.lemmatize(token) for token in tokens] 
cleaned_tokens.append(tokens) 

 return cleaned_tokens  

 
3.5 Data Analysis 
Analysis targeted the three RQs with tailored techniques which is depicted in table 2: 

Table 2: Analysis Techniques Summary 
RQ Technique Tool / Library Output 
RQ1 TF-IDF + K-means scikit-learn Clusters of confusion 
RQ2 Frequency Analysis Pandas & Counter Preference Frequencies 
RQ3 Frequency + VADER Counter & VADER Sentiment Score & Skill Frequencies 

 
RQ1: Identifying Areas of Confusion: The analysis began by converting preprocessed token lists into 
space-separated text to enable Term Frequency-Inverse Document Frequency (TF-IDF) vectorization, 
implemented using scikit-learn’s TfidfVectorizer with a maximum of 400 features, and unigrams and bigrams 
(ngram_range=(1, 2)). Dimensionality reduction was performed using Principal Component Analysis (PCA) 
with 10 components to enhance computational efficiency. The optimal number of clusters (k) was determined 
by evaluating the elbow method and silhouette score across a range of 2 to 10 clusters, selecting the k that 
maximized silhouette coherence. K-means clustering was then applied with the optimal k, initialized using the 
k-means++ algorithm, a random state of 42, and 10 initializations to ensure the stability. Cluster assignments 
were derived, and the top five unique terms per cluster were extracted based on the TF-IDF scores, ensuring 
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no overlap between terms. Cross-tabulation by cohort was computed as percentages to assess the distribution 
across BCA, MCA, and alumni, with the results saved as CSV files for clusters and cross-tabulation. 
RQ2: Determining Preferred Assessment Methods: Frequency analysis was conducted on the 
preprocessed categorical responses, sampling up to 1,000 responses (or the full dataset if smaller) to ensure 
stability. The Counter object counted the occurrences of each response option (e.g., "Collect Response on 
Program To Find & Explain Error"), and the top ten preferences were identified. Cross-tabulation by cohort 
was performed as a percentage distribution, enabling comparisons across BCA, MCA, and alumni. The results 
were saved as CSV files for frequency and cross-tabulation, facilitating quantitative insights into the 
assessment method preferences. 

 

Figure 2: Flow Diagram of Data Processing Pipeline 
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RQ3: Exploring Essential Skills: The analysis involves generating bigrams from preprocessed token lists 
using a window of two, with frequencies counted using a counter. A predefined mapping dictionary merges 
overlapping bigrams (e.g., "solving skill" to "problem solving") to enhance interpretability. The top 10 unique 
bigrams were selected based on their frequency. Sentiment analysis was conducted using the VADER 
sentiment analyzer, computing compound scores ranging from -1 (negative) to +1 (positive) for each response. 
Aggregate metrics—average sentiment and standard deviation—were calculated, along with a sample of the 
first five sentiment scores. Cross-tabulation by cohort was performed as percentages to check for the presence 
of top bigrams in the responses. The results were saved as CSV files for bigram frequencies, cross-tabulation, 
and sentiment metrics, providing a comprehensive view of the skill perceptions and sentiments. 
In summary, the methodology combined both quantitative and qualitative techniques to analyze student 
responses collected via open-ended and multiple-choice survey items. By applying natural language processing 
tools such as TF-IDF vectorization, K-means clustering, frequency analysis, and sentiment analysis, the study 
sought to extract meaningful patterns from student perceptions. The following section presents the results of 
this analysis, highlighting key trends related to programming challenges, assessment preferences, and 
perceived developer competencies across diverse academic backgrounds. 
 

4. Results 

This section presents the findings obtained from the application of natural language processing (NLP) and 
machine learning (ML) techniques to address three research questions (RQs) pertaining to student responses 
to programming assignments. 
 
RQ1: Identification of Areas of Confusion in Programming Assignments 
The technique employed for RQ1 involved Term Frequency-Inverse Document Frequency (TF-IDF) 
vectorization combined with K-means clustering, utilizing the scikit-learn library. Following earlier 
explorations in which the silhouette score was low (e.g., 0.017 with k=5), the number of clusters was reduced 
to k=3 to improve separation, resulting in a silhouette score of 0.262. The top terms for each cluster, based on 
TF-IDF weights, are detailed in Table 3, where each cluster represents a distinct theme of confusion: Cluster 0 
suggests issues with syntax and error handling, Cluster 1 indicates challenges with logical structuring and 
implementation, and Cluster 2 reflects difficulties with foundational programming concepts. Cross-tabulation 
results, showing the percentage of responses from each cohort assigned to each cluster, are provided in Table 
4 to enable comparisons across groups. A visual representation of the distribution of these confusion areas 
across cohorts is shown in Figure 3, which highlights their relative proportions. 
 

Table 3: Top Terms by Cluster (TF-IDF Weights) 

Cluster Top Terms (TF-IDF Weight) 

0 {'error': 21.09, 'syntax': 9.46, 'solving': 6.95} 

1 {'logic': 25.99, 'implementation': 8.54, 'pattern': 6.05} 

2 {'concept': 15.22, 'programming': 13.48, 'difficult': 5.47} 

 
Table 4: Cross-Tabulation of Clusters by Class (Percentage Distribution) 

Class Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 
Alumni 62.4 0.8 9.6 6.4 20.8 
BCA 57.41627 3.349282 14.35407 8.133971 16.74641 
MCA 57.47126 3.448276 14.94253 4.597701 19.54023 

 

Figure 3: Distribution of Confusion Areas Across Cohorts 
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Key confusion areas are further illustrated in Figure 4, highlighting the prevalent terms based on the TF-IDF 
weights. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Key Confusion Areas in Programming Assignments (TF-IDF Weights) 

RQ2: Determination of Preferred Assessment Methods 
The technique employed for RQ2 consisted of frequency analysis, implemented using pandas and the counter 
class from the collection library, supplemented by cross-tabulation to assess class-wise preferences. Frequency 
analysis identified the top three preferred methods for measuring students’ programming concept 
understanding based on a sampled dataset. The most frequently selected method was "Collect Response on 
Program To Find & Explain Error" with 260 occurrences, followed by "Practical Quiz [Written & Lab]" with 
191 occurrences, and "Viva" with 57 occurrences. The results are presented in Table 5. 
 

Table 5: Preferred Methods by Frequency 

Response Frequency 

Find & Explain Error 260 

Practical Quiz 191 

Viva 57 

 
Cross-tabulation analysis examined the percentage distribution of the preferred assessment methods across 
the classes of Alumni, BCA, and MCA. The results indicate that 47.200000% of Alumni, 51.674641% of BCA 
students, and 53.448276% of MCA students preferred "Collect Response on Program To Find & Explain Error." 
For "Practical Quiz [Written & Lab]," the preferences were 42.400000% among Alumni, 39.234450% among 
BCA students, and 32.183908% among MCA students. The method "Viva" was preferred by 10.400000% of 
Alumni, 9.090909% of BCA students, and 14.367816% of MCA students. The percentage distributions are 
listed in Table 6. 

Table 6: Cross-Tabulation of Preferred Assessment Methods by Class (Percentage) 

Class Find & Explain Error Practical Quiz Viva 

Alumni 47.2 42.4 10.4 

BCA 51.674641 39.23445 9.090909 

MCA 53.448276 32.183908 14.36782 

 
RQ3: Exploration of Essential Developer Skills 
The technique employed for RQ3 combines frequency analysis using the counter class with VADER sentiment 
analysis utilizing the vaderSentiment library. The top 6 unique bigrams, representing grouped skills perceived 
as essential (e.g., 'problem solving,’ ‘programming skill' and ‘debugging skill’ as core technical abilities, 
'analytical thinking' and 'collaboration skill' as cognitive and teamwork competencies, 'communication skill' as 
softer or specialized skills), are listed in Table 7. The average sentiment score across responses was 0.134, with 
a standard deviation of 0.293. Cross-tabulation results, showing the percentage of responses from each cohort 
mentioning these skills, are presented in Table 8 to compare the skill emphases. The distribution of the 
sentiment scores by cohort is shown in Fig. 5. 
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Table 7: Top 6 Bigrams by Frequency 
Bigram Frequency 
Problem Solving 192 
Programming Skill 134 
Analytical Thinking 94 
Collaboration Skill 70 
Communication Skill 27 
Debugging Skill 22 

 
Table 8: Proportion of Responses Mentioning Key Skills by Class (Percentage) 

Skill Class False(%) True(%) 

 
Problem Solving 

Alumni 84.42623 15.57377 

BCA 84.13462 15.86539 

MCA 89.01734 10.98266 

 
Programming Skill 

Alumni 91.80328 8.196721 

BCA 89.42308 10.57692 

MCA 94.21965 5.780347 

 
Analytical Thinking 

Alumni 88.52459 11.47541 

BCA 86.53846 13.46154 

MCA 93.06358 6.936416 

 
Collaboration Skill 

Alumni 86.06557 13.93443 

BCA 96.15385 3.846154 

MCA 86.12717 13.87283 

 
Communication Skill 

Alumni 95.90164 4.098361 

BCA 95.19231 4.807692 

MCA 93.06358 6.936416 

 
Debugging Skill 

Alumni 94.2623 5.737705 

BCA 96.15385 3.846154 

MCA 95.95376 4.046243 

 
 
The boxplot in Figure 5 illustrates the distribution of sentiment scores for responses from the MCA, Alumni, 
and BCA cohorts, derived from the VADER sentiment analysis. Each box represents the interquartile range 
(IQR) spanning the 25th to 75th percentiles, with the median score marked as a line within the box. Whiskers 
extend to the minimum and maximum values within 1.5 times the IQR, and any points beyond these whiskers 
are plotted as outliers. For MCA, the median sentiment score was approximately 0.10, with an IQR from -0.05 
to 0.25, and several outliers below -0.5, indicating a range of negative sentiments. The Alumni cohort showed 
a median of 0.15, with an IQR of 0.00 to 0.30, and fewer outliers, suggesting a slightly more positive 
distribution. The BCA cohort had a median of 0.12, with an IQR of -0.02 to 0.28, and moderate outlier 
presence, reflecting a balanced sentiment range. This visualization complements the average sentiment score 
of 0.134 and the standard deviation of 0.293 reported in the text, offering a detailed view of variability across 
cohorts. 

 

Figure 5: Distribution of Sentiment Scores by Cohort 
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Figure 6: Percentage of Skill Mentions by Cohort 

The Heatmap in Figure 6 visualizes the percentage of responses mentioning each of the top 10 skills across the 
Alumni, BCA, and MCA cohorts, as detailed in Table 8. The color intensity, ranging from light yellow (lower 
percentages, e.g., 3.8%) to dark red (higher percentages, e.g., 15.9%), represents the "True (%)" values, with a 
color bar providing the percentage scale. Rows correspond to skills (e.g., 'problem solving and ' programming 
skill'), and the columns represent cohorts. 
For instance, 'problem solving' shows higher mentions in BCA (15.9%) and alumni (15.6%) compared to MCA 
(11.0%), indicated by darker shades for BCA and Alumni. Conversely, 'collaboration skill' has a notable mention 
in Alumni (13.9%) and MCA (13.9%), with a lighter shade for BCA (3.8%), highlighting cohort-specific 
emphases. This visual aid complements tabular data by emphasizing patterns in skill perception across groups. 
 

5. Discussion 
 
The findings from the analysis of 508 student responses in the study "Analyzing Students’ Perception of 
Attributes on Programming Assignments" provide valuable insights into the challenges, preferences, and skill 
perceptions within programming education, offering a foundation to address the research questions (RQ1: 
What are the biggest problems students face when learning to code? RQ2: What are the ways in which students 
think are best at checking their coding knowledge? RQ3: What abilities do students think are important for 
coders?). This section interprets these results in light of the literature, evaluates their implications, and 
identifies their limitations and future research directions. 

5.1 RQ1: What are the biggest problems students face when learning to code? 
The identification of three confusion clusters—syntax and error handling (Cluster 0), logical structuring and 
implementation (Cluster 1), and foundational programming concepts (Cluster 2)—through TF-IDF and K- 
means clustering (k=3, silhouette score 0.262) provides a detailed insight into student difficulties. This aligns 
with [17] and [18], who identify syntax, logical reasoning, and abstraction as persistent barriers, indicating 
consistent challenges across educational contexts. The notable presence of alumni in the syntax/error cluster 
(62.4%) suggests that early stage difficulties may persist without adequate reinforcement, a perspective that is 
less emphasized in prior literature focused on novices. Cohort variability (e.g., BCA’s 14.35% in logical 
structuring versus MCA’s 14.94%) further implies that experience shapes problem perception, offering a novel 
lens for tailoring interventions. Curriculum designers can develop modular courses addressing alumni syntax 
and logic for undergraduates, while instructors can integrate hands-on debugging labs to enhance practical 
skills. Policymakers can advocate competency-based progressions to ensure mastery across stages. 

5.2 RQ2: What ways do students think are best for checking their coding knowledge? 
For RQ2, the preference for “Collect Response on Program To Find & Explain Error” (47.2%–53.4% across 
cohorts) over practical quizzes and vivas resonates with [19], who noted the efficacy of automated feedback in 
improving engagement. This preference, particularly strong among MCA students (53.4%), contrasts with [14], 
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who reviewed viva subjectivity without considering the students’ viewpoints. The results suggest that students 
value assessments that test conceptual understanding over memorization, a perspective absent from the 
literature’s instructor-centric focus. This shift implies that curriculum designers should prioritize error- 
identification tasks, potentially integrating automated tools to align with industry demands for diagnostic 
skills. The lower viva preference (9.1% - 14.4%) across cohorts, despite its traditional use, underscores the need 
to reconsider its relevance in modern programming education. Curriculum designers should embed error- 
identification tasks with real-time feedback tools, whereas instructors should adopt hybrid assessments to 
balance creativity and rigor. Policymakers may update the evaluation standards to reflect student priorities. 
 
5.3 RQ3: What abilities do students think are important for coders? 

The prominence of problem-solving (15.9% BCA), programming skills, and collaboration (13.9% alumni) as 
essential abilities, along with a positive sentiment trend (average 0.134, alumni 0.15), corroborates the findings 
of [16], who emphasized these competencies in professional settings. The lower MCA sentiment (median 0.10, 
with negative outliers) diverges from [6], who noted a consistent valuation of analytical thinking, suggesting 
that advanced coursework may induce frustration, an underexplored aspect in prior studies. Alumni’s balanced 
view of collaboration bridges academic and industry expectations and addresses the curriculum gap identified 
by Kanika et al. [3]. This evolution highlights the need to develop more dynamic skills. These insights suggest 
that instructors should integrate collaborative projects and sentiment-aware feedback systems to nurture well- 
rounded developers. 
 
5.4 Limitations 
Several constraints limit the generalizability and depth of these findings. The sample, confined to a single 
Indian institution, may not reflect global programming education trends, a concern echoed by authors in study 
[22] regarding diversity in computing studies. The survey’s three-question design limits the breadth of insights, 
possibly omitting nuanced difficulties or preferences, and while the pilot’s small sample size (15 students) may 
not fully validate the question’s clarity. Additionally, K-means clustering’s reliance on a subjective k=3 choice, 
despite a silhouette score improvement of 0.262, introduces analytical uncertainty, as Wang et al. in their study 
[21], cautioned about the low separation in educational text clustering. These factors suggest caution when 
extrapolating the results beyond the current context. 
 
5.5 Future Directions 

To address these limitations and deepen the investigation, future research should expand the sample to include 
multiple institutions and countries, thus enhancing diversity and generalizability, as recommended by author 
in their study [22]. Implementing informed consent protocols could strengthen ethical rigor and provide 
clearer insights into participants’ motivations. Longitudinal studies that track the same cohorts over time 
would elucidate how perceptions and difficulties evolve, thus complementing the current cross-sectional 
design. Expanding the survey to include questions on advanced topics (e.g., AI programming and version 
control) could capture a broader skill spectrum, while exploring alternative clustering methods (e.g., 
hierarchical or DBSCAN) might improve the robustness of the RQ1 analysis, addressing the k=3 subjectivity 
noted by [21]. Such efforts would further align programming education with students’ needs and industrial 
expectations. 
In conclusion, this study illuminates the critical perceptions that shape programming education by offering a 
foundation for tailored teaching and assessment strategies. By bridging the literature gaps through diverse 
cohort analyses and advanced NLP techniques, it paves the way for innovative educational technologies and 
practices, with future research poised to deepen these insights. 

6. Conclusion 
 
This study offers a nuanced understanding of students’ experience in programming education through the 
application of advanced computational methods. By addressing the research questions concerning challenges 
in programming (RQ1), preferred assessment methods (RQ2), and the perceived skills of effective 
programmers (RQ3), the investigation synthesizes insights from 508 responses across BCA, MCA, and alumni 
cohorts. The findings reveal a complex landscape where logical and syntactic difficulty predominate, 
interactive error-focused assessments are favored, and problem-solving emerges as a cornerstone skill, 
reflecting both persistent hurdles and evolving learner priorities. 
The study’s primary contribution lies in its innovative use of NLP techniques, including TF-IDF with K-means 
clustering and VADER sentiment analysis, to extract meaningful patterns from mixed-format feedback. This 
approach not only enhances the scalability of analyzing open-ended responses but also provides a robust 
framework for identifying thematic challenges and skill perceptions, a departure from traditional quantitative 
surveys. Furthermore, the exploration of assessment preferences offers actionable insights for automated 
grading systems, while the identification of skill hierarchies informs curriculum development, positioning this 
study as a bridge between educational technology and pedagogical practices. These contributions underscore 
the potential of ML-driven analytics to transform how educational stakeholders interpret and respond to 
student needs. 
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These practical implications are significant for educators, institutions, and designers of grading systems. 
Educators can leverage the identified challenges to refine teaching strategies, emphasizing logical reasoning 
and debugging support through targeted exercises or intelligent tutoring systems. Institutions may consider 
integrating these insights into curriculum redesign to foster a balanced skill set that aligns with industrial 
demands. For grading system designers, the preference for error-explanation tasks suggests a shift toward 
diagnostic and feedback-rich tools, thereby encouraging the development of hybrid platforms that combine 
automation with interactive elements. Such adaptations promise to enhance learning outcomes and align 
assessment practices with student expectations. 
Nevertheless, this study has some limitations. A single-institution sample restricts the generalizability of the 
findings, potentially overlooking institutional or cultural variations. Additionally, the absence of gender-based 
analysis, despite balanced participant distribution, limits the ability to address sex-specific perceptions, an 
area that warrants ethical and methodological attention. These constraints highlight the need for cautious 
interpretation and broader application. 
Future research should include multi-institutional and culturally diverse cohorts to validate and enrich these 
findings. Incorporating gender and other demographic analyses could uncover nuanced perspectives and 
address critical gaps in educational data mining. Longitudinal studies tracking skill perception evolution over 
time, particularly among alumni, would further illuminate long-term educational impacts. Moreover, 
experimental investigations of NLP-enhanced interventions based on these clusters could assess their efficacy, 
paving the way for scalable educational technology. By pursuing these directions, this field can build on the 
foundation of this study to advance programming education in an increasingly data-driven era. 
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